Formulas

Air Velocity in a Pipe

Using the equation and typical values of V, D and L explained to the right approximate values of P are computed as follows:

Velocity	Pipe Diameter in Inches, 10' long				
Ft/Sec	1	2	4	6	10
1	.0004	.0002	.0001	.00007	.00004
2	.0016	.0008	.0004	.00030	.00016
5	.0100	.0050	.0025	.00170	.0010
10	.0400	.0200	.0100	.00670	.0040
15	.0900	.0450	.0225	.01500	.0090
20	.1600	0080	.0400	.02700	.0160
25	.2500	.1250	.0625	.04170	.0250
30	.3600	.1800	.0900	.06000	.0360

$$
V=\sqrt{\frac{25,000 \mathrm{DP}}{L}}
$$

$\mathrm{V}=$ air velocity in feet per second
$D=$ pipe inside diameter in inches
$\mathrm{L}=$ length of pipe in feet
$P=$ pressure loss due to air friction in ounces/square inch
formula from B.F.Sturtevant Company

Air Volume Discharged from Pipe

```
CFM = air volume in cubic feet per minute
V = air velocity in feet per second as determined in the
        equation at the top of this page
A = cross section area of pipe in square feet
```


Boyle's Law

If temperature is kept constant, the volume of a given mass of gas is inversely proportional to the pressure which is exerted upon it.
$\frac{\text { Initial Pressure }}{\text { Final Pressure }}=\frac{\text { Final Volume }}{\text { Initial Volume }}$

Circumference of a Circle

If temperature is kept constant, the volume of a given mass of gas is inversely proportional to the pressure which is exerted upon it.

Circumference $=2 \pi r=\pi d=3.14159 d$
Area $=\pi r^{2}=\pi \frac{d^{2}}{4}=.78539 d^{2}$

Right Cylinder

$r=$ radius
$h=$ length
Volume $=\pi r^{2} h$

Surface Area $=2 \pi r(r+h)$

If end planes are parallel but not at 90° to h, the same formulas apply, but a slice at 90° through the cylinder must be used to determine r.

