Determination of Pressure Drop in the Line

Velocity:
$$v = .409 \quad \frac{Q}{d^2} = .0509 \quad \frac{W}{pd^2} = \frac{q}{.785d^2}$$

Reynold's Number: Re = 124
$$\frac{dvp}{\mu}$$
 = 6.31 $\frac{W}{d\mu}$ = 378 $\frac{dp}{d\mu}$

Pressure Drop, Isothermal, Incompressible Flow (Liquids):

$$\Delta P = .001\ 294\ \frac{fL\ p\ v^2}{d} = .000\ 00336\ \frac{fLW^2}{pd^5} = .0121\ \frac{fL\ q^2}{d^5}$$

Pressure Drop, Isothermal, Compressible, Long Lines (Gases and Vapors):

$$\frac{\Delta P}{P1} = 1 - \sqrt{1 - \frac{f Lp \ 1^{\ v_1 2}}{12 \ g \ d \ P_1}}$$

Symbols and Units for Listed Formulas

- d = inside diameter of hose, inches
- f = friction coefficient, dimensionless
- g = gravitational constant, 32.2 ft./sec.²
- P1 = input pressure, PSI
- ΔP = pressure difference, PSI
- q = rate of flow at flowing condition, cu. ft./min.
- Q = rate of flow, gals./min.
- Re = Reynolds number, dimensionless
- v = flow velocity, ft./sec.
- W = rate of flow, lbs./hr.
- p = weight density of fluid, lbs./cu. ft.
- μ = absolute (dynamic) viscosity, centipoises