

eries

The Expansion Joint People

GOODYEAR RUBBER PRODUCTS INC. Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

We Ship World Wide SERIES **230/220** spool type wide arch rubber expansion joints

PROCO Series 230, Styles 231, 232, & 233 Non-Metallic Expansion Joints are designed for tough, demanding industrial applications, as found in: Chemical/Petrochemical Plants, Industrial Process Piping Systems, Marine Services, Power Generation Plants, Pulp/Paper Plants, Steel Mills, Water/Wastewater and Pollution Control Systems. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series 230 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO!

Series 230 Replaces Series 220. The new and improved PROCO Series 230 replaces the PROCO Series 220 rubber expansion joints. (Series 220 products will be available only in short neutral lengths.) This new hand-built product has been completely re-engineered to provide improved strength, flexibility, movement and spring rate capabilities. Manufactured utilizing tire industry technology, the Series 230 combines woven nylon fabric and nylon tire cord into a fabric matrix bonded with elastomer and reinforced with wire to create a product with greater operating performance. The nomenclature for the new PROCO Series 230 is as follows:

Single Arch Series 230, Style 231 Double Arch Series 230, Style 232 Triple Arch Series 230, Style 233

Greater Movements With A Lower/Wider Arch Profile. The movements for the PROCO Series 230 exceed the specification of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a new and improved lower, wider profile arch, more axial compression and axial extension coupled with lateral misalignment, angular and torsional movements can be obtained without increasing the face-to-face requirements. Installation of the Series 230 in a piping system will negate the need for long and expensive multi-arch products. For greater movements based on reengineering and new product construction, specify the PROCO Series 230.

Less Turbulence Or Material Entrapment. The PROCO 230 Series molded integral flange joins the body at a true 90° angle. Our product will install snug against the mating pipe flange without voids. The flange body of the rubber expansion joint is difficult to form and many manufacturers radius the edge angles. The resulting void between the mating flange and the edge angle can create flow turbulence and allow for material entrapment or bacterial growth. You can avoid these problems by specifying PROCO Series 230 rubber expansion joints.

Chemical Or Abrasive Service Capability. Expensive metallic designs for chemical service can be replaced with the more cost-effective PROCO Series 230. Built with low-cost chemical resistant elastomers, such as Chlorobutyl, DuPont Dow Elastomer Hypalon® rubber, EPDM, Natural, Neoprene and Nitrile, assures an expansion joint compatible with fluid being pumped or piped (See Table 1). When handling abrasive products such as any solids or slurries, Natural or Neoprene filled arch products should be specified. Please refer to PROCO "Chemical to Elastomer Guide" for recommendations on elastomer chemical compatibility for piping processes. Exclusive Sealing Bead Means A Quick Seal. PROCO has built an "O-Ring" on each flange face of the Series 230. Available only from PROCO, the Series 230 seals faster with less torque at installation. For these exclusive features, specify the PROCO Series 230 rubber expansion joints.

Specifications Met. PROCO has assigned conservative pressure ratings to the Series 230 rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Series C. The pressure ratings for the Series 230 rubber expansion joints have been fully tested and are based on a minimum four-to-one safety factor. For pressure protection with confidence, specify the PROCO Series 230.

Tested Force Pound And Spring Rate Tables. The Series 230 rubber expansion joints are in accordance with and/or lower than the guidelines for spring rate data as listed in the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a lower, wider arch profile, the PROCO Series 230 will provide more flexibility than conventional spool-type rubber expansion joints. In addition, the lower/wider arch profile coupled with a modified radial tire cord construction will result in lower flange forces. Lower resultant forces mean reduced stress of related pip-ing system components. PROCO is currently testing each rubber expansion joint size and will list actual test data as opposed to listing hypothetical data normally associated with spring rate tables.

Absorbs Vibration • Noise • Shock. The PROCO Series 230 quiet-operating rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the molded elastomer expansion joint, not related to piping. Install the Series 230 in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems, specify the PROCO Series 230.

Wide Service Range With Low Cost. Engineered to operate up to 200 PSIG or up to 250°F, the PROCO Series 230 can be specified for a wide range of piping system requirements. Compared to competitive products, you will invest less money when specifying the engineered design and industrial quality of the PROCO Series 230.

Large Inventory Means Same-Day Shipment. We maintain the largest inventory of elastomeric expansion joints in the world. Every size cataloged up to 72" is in stock in a variety of elastomers. We can ship the products you need when you need them! In fact, when it comes to rubber expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

cific Elastomer							
endations, See:	PROCO	™ "Chemic	cal To Elas	tomer Gu	uide"		
Style Number	S Couor2	Tube	Maximum	Branding	F.S.A.	h l	Th .
	h Elastomer	Elastomer	Operating Temp. °F (°C)	Label Color	Material Class		
BB 231/BE	Butyl 4	Butyl ⁴	250° (121°)	Black	STD. III		
EE 231/EE	EPDM	EPDM	250° (121°)	Red	STD. III		
NH 231/NF	Neoprene	Hypalon ¹	212° (100°)	Green	STD. II		
NN 5 231/NN	5 Neoprene	Neoprene	225° (107°)	Blue	STD. II		
NP 231/NF	Neoprene	Nitrile	212° (100°)	Yellow	STD. II		
NR 231/NF	Neoprene	Natural	180° (68°)	White	STD. I		
	Open Arc (Single) BB 231/BB ZEE 231/EE NH 231/NH NN ⁵ 231/NP 231/NP 231/NP NR 231/NR	is Cisigle) 6 Elastitier BB 231/BB Butyl 4 EE 231/EE EPDM NH 231/NH Neoprene NP ⁵ 231/NP Neoprene NP 231/NP Neoprene NR 231/NR Neoprene	Cover 2 (Single) 6 Cover 2 Elastomer Tube Elastomer BB 231/BB Butyl 4 Butyl 4 EE 231/EE EPDM EPDM NH 231/NH Neoprene Hypalon 1 NN ⁵ 231/NP Neoprene Neoprene NP 231/NP Neoprene Nitrile NR 231/NR Neoprene Natural	Cover 2 (Single) ⁶ Cover 2 Elastomer Tube Elastomer Derating Elastomer BB 231/BB Butyl ⁴ Butyl ⁴ 250° (121°) FE 231/EE EPDM EPDM 250° (121°) NH 231/NH Neoprene Hypalon ¹ 212° (100°) NN ⁵ 231/NP Neoprene Neoprene Neoprene NP 231/NP Neoprene Nitrile 212° (100°)	Cover2 (Single) ⁶ Cover2 Elastomer Tube Elastomer Maximum (Derating Temp. °F (°C) Dataling Color BB 231/BB Butyl ⁴ Butyl ⁴ 250° (121°) Black FEE 231/EE EPDM EPDM 250° (121°) Black NH 231/NH Neoprene Hypalon ¹ 212° (100°) Green NN ⁵ 231/NP Neoprene Nitrile 212° (100°) Green NP 231/NP Neoprene Nitrile 212° (100°) Yellow NR 231/NR Neoprene Nitrile 212° (100°) Yellow	Cover 2 (Single) 6 Cover 2 Elastomer Tube Elastomer Material Temp. °F (°C) Databil Label Color Material Material Class BB 231/BB Butyl 4 Butyl 4 250° (121°) Black STD. III FE 231/EE EPDM EPDM 250° (121°) Black STD. III NH 231/NH Neoprene Hypalon 1 212° (100°) Green STD. III NP 231/NP Neoprene Nitrile 212° (100°) Yellow STD. II NP 231/NR Neoprene Nitrile 212° (100°) Yellow STD. II NR 231/NR Neoprene Natural 180° (68°) White STD. I	Chi Open Arch (Single) ⁶ Cover ² Elastomer Tube Flastomer Makmain Operating Temp. ◦ F (°C) Databil Label Color Material Class BB 231/BB Butyl ⁴ Butyl ⁴ 250° (121°) Black STD. III RE 231/EE EPDM EPDM 250° (121°) Red STD. III NH 231/NH Neoprene Hypalon ¹ 212° (100°) Green STD. II NP 231/NP Neoprene Nitrile 212° (100°) Yellow STD. II NR 231/NR Neoprene Natural 180° (68°) White STD. I

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

Expansion joint "cover" can be coated with Hypalon® on special order.

3. All products are reinforced with steel and fabric materials.

4 The term "hutul" is synonymous with chlorobutyl (CIIB)

Protecting Piping And Equipment Systems From Stress/Motion

> Series 230 We Ship World Wide

Table	e 2: S	izes •	wove	ments										See	Notes I	-
ZW	×		Ē	z۳	2	31 / 221 M From N	ovement C leutral Pos			Spring Rate Capability Based of Movement at Zero Pressure Co			ating ⁴ litions		Weights ⁵ Ibs / (kgs)	
EXPANSION JOINT SIZE	Inch / (mn	NEUTRAL	LENGI I Inch / (mr	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs Force lbs Compression Force lbs Force lbs Force lbs Force lbs Per 1" rated Lateral Deflection Lateral Deflection Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control 6
1	(25)	<u>6</u>	(152)	231	1.2 (30)	0.6 (15)	0.6 (15)	50.4	2.0	U	5.12 (33)	200 (14.0)	26 (660)	2.0 (0.8)	2.0 (0.8)	
1.25	(32)	<u>6</u>	(152)	231	1.2 (30)	0.6 (15)	0.6 (15)	43.1	2.0		6.20 (40)	200 (14.0)	26 (660)	2.5 (1.1)	2.5 (1.1)	
1.5	(40)	<u>6</u>	(152)	231	1.2 (30)	0.6	0.6	38.1	2.0	Ν	7.44 (48)	200 (14.0)	26 (660)	3.0 (1.4)	2.5	
		<u>6</u>	(152)	231	()					D						
2	(50)	7 8 9 10	(178) (203) (229) (254)	231 231 231 231	1.4 (35)	0.7	0.6	34.2	2.0	E R	12.40 (80)	200 (14.0)	26 (660)	4.0 (1.8)	4.0 (1.8)	
		12 <u>6</u>	(305) (152)	231 231						С						
		7	(178)	231						U						
2.5	(65)	8 9	(203) (229)	231 231	1.4 (35)	0.7 (18)	0.6 (15)	27.6	2.0		15.66 (101)	200 (14.0)	26 (660)	4.5 (2.0)	4.5 (2.0)	
		10	(254)	231						R						
		12	(305)	231						R						
		<u>6</u> 7	(152) (178)	231 231						E						
3	(80)	8	(203)	231	1.4	0.7	0.6	23.0	2.0	Ν	19.38	200	26	5.5	5.5	
Ĭ	(00)	9	(229)	231	(35)	(18)	(15)			т	(125)	(14.0)	(660)	(2.5)	(2.5)	
		10 12	(254) (305)	231 231						•						
		<u>6</u>	(152)	221												
		7	(178)	221						т						
3.5	(90)	8 9	(203) (229)	221 221	0.6	0.3	0.56 (14)	9.0	2.0	E	23.18 (150)	200	26 (660)	6.0 (2.7)	6.0 (2.7)	
		⁹ 10	(229)	221						S						
		12	(305)	221						т						
		<u>6</u> 7	(152)	231						-						
		/ 8	(178) (203)	231 231						I						
4	(100)	9	(229)	231	1.4 (35)	0.7 (18)	0.6 (15)	18.8	2.0	Ν	27.90 (180)	200 (14.0)	26 (660)	8.0 (3.6)	8.0 (3.6)	
		10	(254)	231						G						
		12	(305)	231						866-711-					Sh	

	Tabl	e 2: S	izes •	Move	ments	• For	ces •	Weigh	nts						See	Notes F	Page 7
						2	31 / 221 M From N	ovement C leutral Pos			Spring Rate Capability Based o Movement at Zero Pressure Cor		Opera Condi	iting ⁴ itions		Weights ⁵ lbs / (kgs)	
	EXPANSION Joint Size	Nom. I.D. x Inch / (mm)	NEUTRAL	LENGIN Inch/(mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per " rated Compression Force Ibs Force Ibs Force Ibs per 1" rated Latreral Deflection Latreral Deflection Angular Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
			<u>6</u>	(152)	231												
			7 8	(178) (203)	231 231												
	5	(125)	9	(229)	231	1.4 (35)	0.7 (18)	0.6 (15)	15.2	2.0	U	38.13 (246)	190 (13.0)	26 (660)	9.0 (4.1)	8.5 (3.9)	4.0 (1.8)
			10	(254)	231						N						
			12	(305)	231 231						D						
			<u>6</u> 7	(152) (178)	231						Е						
	6	(150)	8	(203)	231	1.4	0.7	0.6	12.8	2.0	R	49.91	190	26	11.0	9.5	4.0
	Ŭ	(130)	9	(229)	231	(35)	(18)	(15)			ĸ	(322)	(13.0)	(660)	(5.0)	(4.3)	(1.8)
			10 12	(254) (305)	231 231												
			<u>6</u>	(152)	231												
			7	(178)	231						С						
	•	(000)	8	(203)	231	1.4	0.7	0.6	9.7	2.0	U	77.97	190	26	15.0	14.5	8.0
	8	(200)	9 10	(229) (254)	231 231	(35)	(18)	(15)	5.7	2.0	R	(503)	(13.0)	(660)	(6.8)	(6.6)	(3.6)
			12	(305)	231						R						
			14	(356)	231						E						
	10	(250)	6 7	(152) (178)	221 221	0.7	0.4 (10)	0.5 (13)	4.1	2.0	N	116.97 (755)	190 (13.0)	26 (660)	23.0 (10.4)	17.0 (7.7)	10.0 (4.5)
			<u>8</u>	(170)	231						т						
			9	(229)	231												
	10	(250)	10	(254)	231	1.6 (40)	0.8 (20)	0.8 (20)	9.1	2.0		119.97 (774)	190 (13.0)	26 (660)	23.0 (10.4)	17.0 (7.7)	10.0 (4.5)
			12 14	(305) (356)	231 231						-						
	12	(300)	6	(152)	221	0.7	0.4 (10)	0.5 (13)	3.4	2.0	т	157.74	190 (13.0)	26 (660)	26.5 (12.0)	24.5 (11.0)	10.0
		(000)	7	(178)	221	(17)	(10)	(13)			E	(1018)	(13.0)	(660)	(12.0)	(11.0)	(4.5)
			<u>8</u> 9	(203) (229)	231 231						S						
	12	(300)	10	(254)	231	1.6 (40)	0.8 (20)	0.8 (20)	7.6	2.0	т	161.18 (1045)	190 (13.0)	26 (660)	34.0 (15.4)	24.5 (11.0)	10.0 (4.5)
			12	(305)	231		()	()			I		((000)	(.3.1)	(()
			14 。	(356)	231 231						Ν						
			<u>8</u> 9	(203) (229)	231						G						
	14	(350)	10	(254)	231	1.6 (40)	0.8	0.8	6.5	2.0		210.18 (1356)	130 (9.0)	26 (660)	40.0 (18.1)	27.0 (12.3)	12.0 (5.4)
Series 230			12	(305)	231									(000)	()	(.2.0)	
GOO	D	Y	EA	R	C	all 1	llo1	Fre	e:	1-	866-711-	467	3			Sh	
RUBBER											arRubberProdu			N	l o r i	d V	/ide

Series 230

GOO

 	Table	e 2: S	izes •	Move	ments	• For	ces •	Weigh	its						See	Notes P	Page 7
····································		× -		_	_ u	2							Opera Cond	iting ⁴ itions			
10 20 23 24 25 26 <th26< th=""> 26 26 26<!--</th--><th>EXPANSION Joint Size</th><th>Nom. I.D. J. Inch / (mm</th><th>NEUTRAL</th><th>LENGIN Inch / (mm</th><th>EXPANSION Joint Styl</th><th>Axial Compression Inch / (mm)</th><th>Axial Extension Inch / (mm)</th><th>Lateral Deflection Inch / (mm)</th><th>Angular ¹ Deflection Degrees</th><th>Torsional ² Rotation Degrees</th><th>Force Ibs per 1" rated Compression Force Ibs per 1" rated Extension Force Ibs per 1" rated Latreral Deflection Latreral Deflection Force 1t-lbs per 1" rated</th><th>Thrust Factor ³ In2 / (cm2)</th><th>Positive PSIG/ (Bar)</th><th>Vacuum Inches of Hg/ (mm of Hg)</th><th>Expansion Joint Assembly</th><th>Retaining Ring Set</th><th>Control ⁶ Rod Assembly</th></th26<>	EXPANSION Joint Size	Nom. I.D. J. Inch / (mm	NEUTRAL	LENGIN Inch / (mm	EXPANSION Joint Styl	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated Compression Force Ibs per 1" rated Extension Force Ibs per 1" rated Latreral Deflection Latreral Deflection Force 1t-lbs per 1" rated	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
10 10<			<u>8</u>	(203)	231												
10 (10) ((229)		10		0.0	F 7	0.0		00474		00	47.0	00 F	45.0
12 13<	16	(400)		. ,					5.7	2.0	u						15.0 (6.8)
8 8 20 231																	
9 9 23 10 231 231 <th></th> <th></th> <th></th> <th>· ,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>N</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				· ,							N						
18 450 10 250 231				. ,							D						
10 100 100 101	10	(450)		. ,		1.6	0.8	0.8	5.1	2.0	E	325.50	115	26	56.0	34.0	16.0
14 15 14 15 14 15 16<	10	(450)		. ,	-		(20)				R						(7.2)
10 10<				. ,													
0 0				()													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	(500)	10	(254)	231		0.8	0.8	5.7	2.0	С	392.62		26 (660)	67.0	38.0 (17.3)	16.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			12	(305)	231	(40)	(20)	(20)			U	(2000)	(0.0)	(000)	(00.4)	(17.0)	(1.2)
22 (50) 8 (20) 221 0.8 0.5 0.5 0.6 2.0 24 (50) 12 (20) 231 2.0 1.0 (20) 1.0 1.0 2.0 2.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1			14	(356)	231						R						
22 (30) 9 (22) 221 (20) (13) (14) (13) (13) (13) (13) (13) (13) (13) (13) (13) (14) (13) (13) (13) (13) (13) (13) (14) (13) (13) (13) (13) (13) (13) (14) (14) (15) (13) (13) (13) (14) (14) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (15) (22	(550)	8	(203)	221	0.8	0.5	0.5	2.6	2.0		483.08	100	26	70.0	44.0	19.0
$ \begin{array}{c} 1 \\ 22 \\ (55) \\ 12 \\ (306) \\ 14 \\ (356) \\ 231 \\ 24 \\ (60) \\ 9 \\ (229) \\ 221 \\ 221 \\ 20 \\ 221 \\$	22	(550)	9	(229)	221												(8.6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(254)	231						E						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	(550)		(305)		2.0 (51)		1.0 (25)	5.2	2.0	Ν				70.0 (31.8)	44.0 (20.0)	19.0 (8.6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				· ,							т						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	(600)							2.3	2.0							19.0
24 600 12 (305) 231 2.0 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 1.5 1				· · /		(20)	(10)	(10)				(0001)	(7.0)	(000)	(00.0)	(21.0)	(0.0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	(000)		. ,		2.0	1.0	1.0	4.8	2.0		562.03	100	26	79.0	48.0	20.0
10 (25) (23) (25) (26) (27) (26) (26) (26) (26) (26) (26) (26) (26) (26) (26) (26) (26) (26) (26) (24	(600)		. ,							т						(9.0)
26 (650) 12 (305) 231 2.0 1.0 (25) 1.0 (25) 4.4 2.0 S 649.14 90 26 100.0 51.0 (20.0) 14 (356) 231 2.0 (25) 1.0 (25) 1.0				· ,							E						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	(650)		. ,					4.4	2.0	S						20.0
28 10 (254) 231 2.0 1.0 2.0 1		()		. ,		(51)	(25)	(25)			т	(4188)	(6.0)	(660)	(45.4)	(23.1)	(9.0)
28 (700) 12 (305) 231 2.0 (51) 1.0 (25) 1.0 (25) 4.1 2.0 N 742.45 (4790) 90 (6.0) 26 (660) 102.0 (46.3) 55.0 (25.0) 28.0 (12.6) 30 (750) 9 (229) 221 0.9 (23) 0.6 (15) 0.5 (13) 2.2 2.0 G 798.58 (5152) 90 (6.0) 26 (600) 117.0 (25.1) 63.0 (28.6) 29.5 (13.3) 30 (750) 12 (305) 231 5.0 (51) 1.0 (25) 1.0 (25) 3.8 2.0 G 798.58 (5152) 90 (6.0) 26 (600) 117.0 (25.1) 63.0 (28.6) 29.5 (13.3) 30 (750) 12 (305) 231 842.27 (5434) 90 (6.0) 26 (660) 117.0 (25.1) 63.0 (28.6) 29.5 (13.3) 14 (356) 231 14 (356) 231 .			<u>10</u>	· · /													
14 (356) 231 I <thi< th=""> I<!--</th--><th>28</th><th>(700)</th><th>12</th><th>(305)</th><th>231</th><th>2.0 (51)</th><th></th><th>1.0</th><th>4.1</th><th>2.0</th><th>I</th><th>742.45</th><th></th><th>26 (660)</th><th>102.0</th><th>55.0 (25.0)</th><th>28.0 (12.6)</th></thi<>	28	(700)	12	(305)	231	2.0 (51)		1.0	4.1	2.0	I	742.45		26 (660)	102.0	55.0 (25.0)	28.0 (12.6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	(356)	231	(01)	()	(20)			Ν	(1100)	(0.0)	(300)	(10.0)	(_0.0)	(.2.0)
30 (750) 12 (305) 231 2.0 (51) 1.0 (25) 1.0 (25) 3.8 2.0 842.27 (5434) 90 (6.0) 26 (660) 117.0 (53.1) 63.0 (28.6) 29.5 (13.3)	30	(750)	9	(229)	221	0.9 (23)		0.5 (13)	2.2	2.0	G	798.58 (5152)		26 (660)	117.0 (53.1)	63.0 (28.6)	29.5 (13.3)
14 (356) 231 (51) (25) (25) (25) (5434) (6.0) (660) (53.1) (28.6) (13.3)			<u>10</u>	(254)	231	. ,										. ,	
	30	(750)	12	(305)	231				3.8	2.0						63.0 (28.6)	29.5 (13.3)
			14	(356)						4	000 744		0		We	Chi	in
R PRODUCTS INC. WebSales@GoodyearRubberProducts.com World Wid	D	Y	EA	R													

Series 230

XPANSION	JOINT SIZE Nom. I.D. x Inch / (mm)															Page 7
XPANSION			_	<u>_</u> ш	2	31 / 221 Mo From N	ovement Ca eutral Posi			Spring Rate Capability Based on Movement at Zero Pressure Con		Opera Condi			Weights ⁵ Ibs / (kgs)	
	JOINT Nom. Inch /		LENGIN Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs per 1" rated per 1" rated Force lbs per 1" rated Erree lbs per 1" rated per 1" rated Force tLbs per 1" rated Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
32	(800)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.6	2.0		948.29 (6118)	90 (6.0)	26 (660)	120.0 (54.4)	68.0 (30.8)	33.0 (14.9)
34	(850)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.4	2.0	U N	1060.51 (6842)	90 (6.0)	26 (660)	122.0 (55.3)	72.0 (32.7)	43.0 (19.5)
36	(900)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.2	2.0	D E	1179.09 (7607)	90 (6.0)	26 (660)	143.0 (64.9)	76.0 (34.5)	43.0 (19.5)
38	(950)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.0	2.0	R	1303.86 (8412)	90 (6.0)	26 (660)	162.0 (73.5)	86.0 (39.0)	43.0 (19.5)
40	(1000)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	2.9	2.0	с	1434.99 (9258)	90 (6.0)	26 (660)	173.0 (78.5)	100.0 (45.5)	43.0 (19.5)
42	(1050)	14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	3.3	2.0	U R	1628.28 (10505)	80 (5.5)	26 (660)	193.0 (87.5)	100.0 (45.5)	44.0 (20.0)
44	(1100)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	3.1	2.0	R	1774.44 (11448)	80 (5.5)	26 (660)	198.0 (89.8)	104.0 (37.2)	44.0 (20.0)
46	(1150)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	3.0	2.0	EN	1926.81 (12431)	80 (5.5)	26 (660)	205.0 (93.0)	127.0 (57.6)	44.0 (20.0)
48	(1200)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.9	2.0	т	2085.53 (13455)	80 (5.5)	26 (660)	211.0 (95.7)	132.0 (59.9)	44.0 (20.0)
50	(1250)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.8	2.0		2250.45 (14519)	80 (5.5)	26 (660)	240.0 (108.8)	134.0 (60.0)	44.0 (20.0)
52	(1300)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.6	2.0	т	2421.72 (15624)	80 (5.5)	26 (660)	256.0 (116.1)	136.0 (61.7)	60.0 (27.0)
54	(1350)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.6	2.0	E	2599.35 (16770)	80 (5.5)	26 (660)	265.0 (120.1)	150.0 (68.0)	63.0 (28.6)
56	(1400)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.5	2.0	s T	2931.67 (18914)	80 (5.5)	26 (660)	288.0 (130.6)	165.0 (70.8)	63.0 (28.6)
58	(1450)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.4	2.0		3011.34 (19428)	80 (5.5)	26 (660)	300.0 (136.1)	190.0 (86.2)	66.2 (30.0)
60	(1500)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.3	2.0	N	3208.97 (20703)	80 (5.5)	26 (660)	310.0 (140.6)	200.0 (90.7)	68.3 (31.2)
66	(1650)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.1	2.0	G	3839.51 (24771)	80 (5.5)	26 (660)	350.0 (158.7)	240.0 (108.8)	71.0 (32.2)
68	(1700)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.0	2.0		4062.24 (28208)	70 (5.0)	26 (660)	368.8 (166.9)	227.0 (103.0)	76.3 (34.6)
D	Y	EA	R	C						866-711-					Sh	ip /ide

Tabl	e 2: S	izes •	Move	ments	• For	ces •	Weigh	ts							Se	e Notes E	Below
Zui	X ((٨Щ	2	31 / 221 Mi From N	ovement C eutral Pos				Capability Based o Zero Pressure Cor		Opera Cond			Weights ⁵ Ibs / (kgs)	
EXPANSIO JOINT SIZI	Nom. I.D. x Inch / (mm)		LENGIA Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated Compression Force Ibs per 1" rated Extension	Force Ibs per 1" rated Latreral Deflection Force ft-lbs per 1° rated Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
72	(1800)	<u>12</u>	(305)	231	2.4	1.2	1.1	1.9	2.0	U		4526.62	70	26	390.0	290.0	87.0
12	(1000)	14	(356)	231	(61)	(30)	(28)			N		(29244)	(5.0)	(660)	(176.9)	(131.5)	(39.4)
78	(1050)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.8	2.0	D		5410.60	85	26	410.0	315.0	103.0
/0	(1950)	14	(356)	231	(57)	(30)	(25)			E R		(34907)	(6.0)	(660)	(186.0)	(142.9)	(46.7)
		<u>12</u>	(305)	231	2.3	1.2	1.0	1.6	2.0			6221.13	85	26	440.0	350.0	113.0
84	(2100)	14	(356)	231	(57)	(30)	(25)			C U		(40136)	(6.0)	(660)	(200.0)	(158.0)	(51.3)
		<u>12</u>	(305)	231	2.3	1.2	1.0	1.6	2.0	R		7088.11	85	26	448.0	363.0	125.0
90	(2250)	14	(356)	231	(57)	(30)	(25)			R		(45730)	(6.0)	(660)	(203.1)	(164.6)	(56.7)
96	(0.400)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.4	2.0	E N		8011.85	85	26	466.0	367.0	125.0
90	(2400)	14	(356)	231	(57)	(30)	(25)			т		(51689)	(6.0)	(660)	(211.3)	(170.5)	(56.7)
100	(0550)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.3	2.0	т		8992.02	85	26	485.8	395.0	137.0
102	(2550)	14	(356)	231	(57)	(30)	(25)			E		(58013)	(6.0)	(660)	(220.0)	(179.1)	(62.1)
100	(0=0.0)	<u>12</u>	(305)	231	2.3	1.2	1.1	1.2	2.0	S T		10028.75	85	26	510.0	425.0	139.0
108	(2700)	14	(356)	231	(57)	(30)	(28)			1		(64702)	(6.0)	(660)	(231.3)	(192.7)	(63.0)
120	(0000)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.1	2.0	Ν		12271.84	85	26	540.0	565.0	151.0
120	(3000)	14	(356)	231	(57)	(30)	(25)			G		(79173)	(6.0)	(660)	(244.9)	(256.2)	(65.8)

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

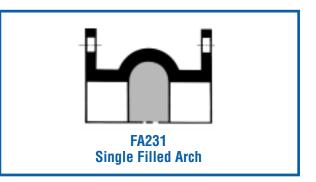
Neutral lengths underlined are the recommended minimum lengths.

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar NOTES:

1. The degree of angular movement is based on the maximum rated extension.

Torsional movement is expressed when the expansion joint is at its neutral length.
 To determine "end thrust" multiply thrust factor by operating pressure of system

To determine "end thrust", multiply thrust factor by operating pressure of system.
 Pressure rating is based on 170°F operating temperature with a 4:1 safety factor. At higher temperatures, the


Pressure rating is based on 1/0⁺⁺ operating temperature with a 4:1 safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated or working pressure for 10 minutes is available upon request.

5. Weights are approximate and vary due to OAL.

 Control rod unit weight consists of one rod with washers, nuts and two control rod plates. Multiply number of control rods needed for application (as specified in the Fluid Sealing Association's Technical Handbook) to determine correct weights.

Filled Arch Rubber Expansion Joints

Known as Style FA231 or Style FA221 the Series FA230 Rubber Expansion Joints are designed to eliminate flow turbulence and collection of solids in the arch core. Filled Arch Rubber Expansion Joints can be found in applications such as sludge, slurries or other heavy solids where material entrapment, high flow velocity or high abrasion conditions exist. Filled arch products are manufactured with seamless tube and are built as an integral part of the carcass. Although the tube is made of a low durometer filler stock, movement ratings of the Style FA231 or Style FA221 are 50% less than those movements listed in the table above. PROCO can manufacture any size listed in the table above.

We Ship World Wide

Toll Free Phone(800) 344-3246International Calls(209) 943-6088Facsimile(209) 943-0242E-mailsales@procoproducts.comWeb Sitehttp://www.procoproducts.com

double wide arch spool type rubber expansion joints

Series 230

	Table	e 3: S	izes •	Move	ments	• For	ces •	Weigh	its						See	Notes P	age 9
	_					2		ovement Ca leutral Posi			Spring Rate Capability Based on Movement at Zero Pressure Conc			ating ⁴ itions		Weights ⁵ Ibs / (kgs)	
	EXPANSION JOINT SIZE	Nom. I.D. x Inch / (mm)	NEUTRAL	LENGIH Inch / (mm)	EXPANSION JOINT STYLE	Axial Compression Inch/ (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated Compression Compression Force Ibs Force Ibs Force Ibs Per 1" rated Force It-Ibs Per 1" rated Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
	1.5	(40)	<u>10</u>	(254)	232	2.4 (61)	1.2 (30)	1.2 (30)	58.0	2.0		7.44 (48)	200 (14.0)	26 (660)	3.0 (1.4)	2.5 (1.1)	2.3 (1.0)
	2	(50)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	53.8	2.0	U	12.40 (80)	200	26 (660)	4.0 (1.8)	4.0 (1.8)	2.8 (1.3)
	2.5	(65)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	47.4	2.0	N	15.66 (101)	200 (14.0)	26 (660)	4.5 (2.0)	4.5 (2.0)	2.8 (1.3)
	3	(80)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	42.2	2.0	D	19.36 (125)	200 (14.0)	26 (660)	6.0 (2.7)	5.5 (2.5)	2.8 (1.3)
	4	(100)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	34.2	2.0	Е	27.90 (180)	200 (14.0)	26 (660)	8.5 (3.9)	8.0 (3.5)	2.8 (1.3)
	5	(125)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	28.6	2.0	R	38.13 (246)	190 (13.0)	26 (660)	9.5 (4.3)	8.5 (3.9)	4.0 (1.8)
	,		<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	24.4	2.0	K	49.91 (322)	190 (13.0)	26 (660)	11.5 (5.2)	9.5 (4.3)	4.0 (1.8)
	6	(150)	12	(305)	232	2.8 (70)	1.4 (34)	1.2 (30)	24.4	2.0		49.91 (322)	190 (13.0)	26 (660)	11.5 (5.2)	9.5 (4.3)	4.0 (1.8)
			10	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	18.8	2.0	С	77.97 (503)	190 (13.0)	26 (660)	16.0 (7.3)	14.5 (6.6)	8.0 (3.6)
	8	(200)	<u>12</u>	(305)	232	2.8 (70)	1.4 (34)	1.2 (30)	18.8	2.0	U	77.97 (503)	190 (13.0)	26 (660)	16.0 (7.3)	14.5 (6.6)	8.0 (3.6)
			12	(305)	222	1.4 (35)	0.8 (20)	1.0 (25)	8.2	2.0	R	116.97 (755)	190 (13.0)	26 (660)	28.3 (12.8)	17.0 (7.7)	10.0 (4.5)
	10	(250)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	17.8	2.0	R	119.97 (774)	190 (13.0)	26 (660)	29.0 (13.2)	17.0 (7.7)	10.0 (4.5)
	10		12	(305)	222	1.4 (35)	0.8	1.0 (25)	6.8	2.0	ĸ	157.74 (1018)	190 (13.0)	26 (660)	36.0 (16.3)	24.5 (11.0)	10.0 (4.5)
	12	(300)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	14.9	2.0	E	161.98 (1045)	190 (13.0)	26 (660)	36.0 (16.3)	24.5 (11.0)	10.0 (4.5)
			12	(305)	222	1.4 (35)	0.8 (20)	1.0 (25)	5.8	2.0	N	204.61 (1320)	140 (9.5)	26 (660)	44.0 (20.0)	27.0 (12.3)	12.0 (5.4)
	14	(350)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	12.9	2.0	т	210.18 (1356)	130 (9.0)	26 (660)	44.0 (20.0)	27.0 (12.3)	12.0 (5.4)
			16	(406)	232	3.2 (80)	1.6 (40)	1.6 (40)	12.9	2.0		210.18 (1356)	130 (9.0)	26 (660)	44.0 (20.0)	27.0 (12.3)	12.0 (5.4)
			12	(305)	222	1.6 (40)	1.0 (25)	1.0 (25)	7.0	2.0	-	257.54 (1662)	110 (7.5)	26 (660)	53.0 (24.0)	33.5 (15.2)	15.0 (6.8)
	16	(400)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	11.3	2.0	Т	264.74 (1708)	115 (8.0)	26 (660)	53.0 (24.0)	33.5 (15.2)	15.0 (6.8)
			16	(406)	232	3.2 (80)	1.6 (40)	1.6 (40)	11.3	2.0	E	264.74 (1708)	115 (8.0)	26 (660)	53.0 (24.0)	33.5 (15.2)	15.0 (6.8)
			12	(305)	222	1.6 (40)	1.0 (25)	1.0 (25)	6.2	2.0	S	316.59 (2043)	110 (7.5)	26 (660)	61.0 (27.7)	34.0 (15.5)	16.0 (7.2)
	18	(450)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	10.1	2.0	т	325.50 (2100)	115 (8.0)	26 (660)	61.0 (27.7)	34.0 (15.5)	16.0 (7.2)
			16	(406)	232	3.2 (80)	1.6 (40)	1.6 (40)	10.1	2.0		325.50 (2100)	115 (8.0)	26 (660)	61.0 (27.7)	34.0 (15.5)	16.0 (7.2)
			12	(305)	222	1.6 (40)	1.0 (25)	1.0 (25)	5.6	2.0	N	381.69 (2463)	110 (7.5)	26 (660)	73.0 (33.1)	38.0 (17.3)	16.0 (7.2)
	20	(500)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	9.1	2.0	N	392.62 (2533)	115 (8.0)	26 (660)	73.0 (33.1)	38.0 (17.3)	16.0 (7.2)
1			16	(406)	232	3.2	1.6	1.6	9.1	2.0	G	392.62	115	26	73.0	38.0	16.0
0	D	YI	EA	R	Ca	all 1	II 0	Fre	e:	1-	866-711-4	467	3			Shi	-
IR	PRO	DUC	TS IN	iC.							arRubberProdu		om	N	ori	d W	l i d e

Tabl	e 3: S	izes •	Move	ments	• For	ces •	Weigh	ts						See	e Notes E	Below
Zu	× (_	(N H	2		ovement Ca leutral Posi			Spring Rate Capability Based of Movement at Zero Pressure Con		Opera Condi			Weights ⁵ Ibs / (kgs)	
EXPANSIO JOINT SIZ	Nom. I.D. x Inch / (mm)	NEUTRAL	LENGIN Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch/ (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated Compression Force Ibs Force Ibs Force Ibs Per 1" rated Latreral Deflection Force ft-Ibs Force ft-Ibs Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
24	(600)	14	(356)	222	1.6 (40)	1.0 (25)	1.0 (25)	4.7	2.0	U	562.82 (3631)	100 (7.0)	26 (660)	88.0 (40.0)	48.0 (21.8)	20.0 (9.1)
	(000)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	9.5	2.0	N D	562.03 (3626)	100 (7.0)	26 (660)	88.0 (40.0)	48.0 (21.8)	20.0 (9.1)
30	(750)	14	(356)	222	1.9 (48)	1.0 (25)	1.0 (25)	4.3	2.0	E R	798.58 (5152)	90 (6.0)	26 (660)	127.0 (57.6)	63.0 (28.6)	29.5 (13.3)
	(100)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	7.6	2.0	с	842.27 (5434)	90 (6.0)	26 (660)	127.0 (57.6)	63.0 (28.6)	29.5 (13.3)
34	(850)	14	(356)	222	1.9 (48)	1.0 (25)	1.0 (25)	3.8	2.0	U R	1007.86 (8502)	90 (6.0)	26 (660)	134.0 (60.8)	72.0 (32.7)	43.0 (19.5)
	(000)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	6.7	2.0	R E	1060.51 (6842)	90 (6.0)	26 (660)	134.8 (60.8)	72.0 (32.7)	43.0 (19.5)
36	(900)	14	(356)	222	1.9 (48)	1.0 (25)	1.0 (25)	3.6	2.0		$\underset{(7852)}{1217.14}$	90 (6.0)	26 (660)	156.0 (70.8)	76.0 (34.5)	43.0 (19.5)
	()	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	6.3	2.0	т	1179.09 (7607)	90 (6.0)	26 (660)	156.0 (70.8)	76.0 (34.5)	43.0 (19.5)
42	(1050)	14	(356)	222	2.2 (56)	1.5 (38)	1.2 (30)	3.1	2.0	E	1673.13 (10775)	80 (5.5)	26 (660)	211.0 (95.7)	100.0 (45.4)	44.0 (20.0)
	(1000)	<u>16</u>	(406)	232	4.8 (120)	2.4 (61)	2.2 (56)	6.5	2.0	S T	1628.28 (10505)	80 (5.5)	26 (660)	211.0 (95.7)	100.0 (45.4)	44.0 (20.0)
48	(1200)	14	(356)	222	2.2 (56)	1.5 (38)	1.2 (30)	2.7	2.0	I N	2134.86 (13773)	80 (5.5)	26 (660)	222.0 (100.7)	132.0 (59.9)	44.0 (20.0)
	(1200)	<u>16</u>	(406)	232	4.8 (120)	2.4 (61)	2.2 (56)	5.7	2.0	G	2085.53 (13455)	80 (5.5)	26 (660)	222.8 (101.0)	132.0 (59.9)	44.0 (20.0)

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

Larger diameters available upon request.

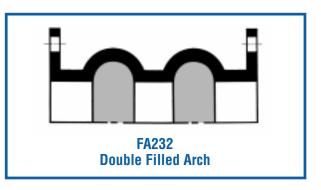
Neutral lengths underlined are the recommended minimum lengths.

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar NOTES:

1. The degree of angular movement is based on the maximum rated extension.

2. Torsional movement is expressed when the expansion joint is at neutral length.

3. To determine "end thrust", multiply thrust factor by operating pressure of system.


4. Pressure rating is based on 170°F operating temperature with a 4:1 safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated or working pressure for 10 minutes is available upon request.

5. Weights are approximate and vary due to OAL.

6. Control rod unit weight consists of one rod with washers, nuts and two control rod plates. Multiply number of control rods needed for application (as specified in the Fluid Sealing Association's Technical Handbook) to determine correct weights.

Filled Arch Rubber Expansion Joints

Known as Style FA232 or Style FA222 the Series FA230 Rubber Expansion Joints are designed to eliminate flow turbulence and collection of solids in the arch core. Filled Arch Rubber Expansion Joints can be found in applications such as sludge, slurries or other heavy solids where material entrapment, high flow velocity or high abrasion conditions exist. Filled arch products are manufactured with seamless tube and are built as an integral part of the carcass. Although the tube is made of a low durometer filler stock, movement ratings of the Style FA232 or Style FA222 are 50% less than those movements listed in the table above. PROCO can manufacture any size listed in the table above.

We Ship

World Wide

International Calls (209) 943-6088

Facsimile (209) 943-0242

E-mail sales@procoproducts.com

Web Site http://www.procoproducts.com

triple wide arch spool type rubber expansion joints

Series 230

1.5 (4) 12 (30) 223 (33) 0.7 1.5 41.5 2.0 (40) <th></th> <th>Table</th> <th>e 4: S</th> <th>izes •</th> <th>Move</th> <th>ments</th> <th>• For</th> <th>ces •</th> <th>Weigh</th> <th>its</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>See l</th> <th>Votes Pa</th> <th>ge 11</th>		Table	e 4: S	izes •	Move	ments	• For	ces •	Weigh	its						See l	Votes Pa	ge 11
1.5 1.6 <th></th> <th>Z</th> <th>×</th> <th></th> <th>•</th> <th>-^щ</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Opera Cond</th> <th>ating ⁴ itions</th> <th></th> <th>Weights ⁵ lbs / (kgs)</th> <th></th>		Z	×		•	- ^щ	2							Opera Cond	ating ⁴ itions		Weights ⁵ lbs / (kgs)	
1.5 (4) 1.4 (36) 2.3 (35) (16) (38) (7.4) 2.0 U (40) (14) (60) (11) (17)<		EXPANSION JOINT SIZE	Nom. I.D.) Inch / (mm		LENGIH Inch / (mm	EXPANSION Joint Styl		Axial Extension Inch / (mm)		Angular ¹ Deflection	Torsional ² Rotation Degrees	Force lbs per 1" rated Compression Force lbs Extension Force lbs per 1" rated Latreral Deflection Force ft-lbs Angular				Expansion Joint Assembly		Control ⁶ Rod Assembly
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4 5	(10)	12	(305)	223	(33)	(18)	(38)	41.5	2.0			(14.0)	(660)	(1.8)	(1.1)	(2.7)
2 (a) 12 (a) (a) <th(a)< th=""> <th(a)< th=""> <th(a)< th=""></th(a)<></th(a)<></th(a)<>		1.5	(40)	<u>14</u>	(356)	233	(90)	(45)	(48)				(48)	(14.0)	(660)	(1.8)	(1.1)	(2.7)
14 (356) 233 (4.1) (2.0) (2.4		2	(50)	12	(305)	223	(33)	(18)	(38)			N	(50)	(14.0)	(660)	(2.5)	(1.8)	(3.2)
2.5 (6) 12 (0.0) 223 (3.0) (1.0) (3.0) <th></th> <th></th> <th>(00)</th> <th><u>14</u></th> <th>(356)</th> <th>233</th> <th>(105)</th> <th>(51)</th> <th>(48)</th> <th></th> <th></th> <th>D</th> <th>(80)</th> <th>(14.0)</th> <th>(660)</th> <th>(2.5)</th> <th>(1.8)</th> <th>(3.2)</th>			(00)	<u>14</u>	(356)	233	(105)	(51)	(48)			D	(80)	(14.0)	(660)	(2.5)	(1.8)	(3.2)
14 (36) 233 (4,1) 2.0 (1,9) (5,5) 2.0 R (101) (100) (60) (60) (61) (7,1)		2.5	(65)	12	(305)	223	(33)	(18)	(38)			E	(95)	(14.0)	(660)	(2.7)	(2.0)	(3.2)
3 (a) 12 (a) 23 (a) (a) <th(a)< th=""> <th(a)< th=""> <th(a)< th=""></th(a)<></th(a)<></th(a)<>			(00)	<u>14</u>	(356)	233	(105)	(51)	(48)			R	(101)	(14.0)	(660)	(2.7)	(2.0)	(3.2)
14 (356) 233 (4,1) 210 (14) (35,1) 210 12 (305) 223 (13) (16) (13) (15) 22.5 2.0 C (140) (60) (410) (60) (410) (60) (410) (60) (410) (60) (410) (60) (411) (36) (3.6)		3	(80)	12	(305)	223	(33)	(18)	(38)				(113)	(14.0)	(660)	(3.2)	(4.3)	(3.4)
4 (100) 12 (305) 223 (31) (16) (36) (36) (37) (48) (36) (37) (48) (36) (37) (48) (36) <td< th=""><th></th><th></th><th>(00)</th><th><u>14</u></th><th>(356)</th><th>233</th><th>(105)</th><th>(51)</th><th>(48)</th><th></th><th></th><th></th><th>(125)</th><th>(14.0)</th><th>(660)</th><th>(3.2)</th><th>(4.3)</th><th>(3.4)</th></td<>			(00)	<u>14</u>	(356)	233	(105)	(51)	(48)				(125)	(14.0)	(660)	(3.2)	(4.3)	(3.4)
14 (356) 233 (1,1) 2.0 (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,0) (4,1) (3,0) (4,0)<		4	(100)	12	(305)	223	(33)	(18)	(38)			C	(172)	(14.0)	(660)	(4.1)	(3.6)	(3.6)
5 (12) (12) (30) (23) (43) (20) (38) (30) (60) (5.0) (3.9) (3.6) 14 (356) 233 (11) (20) (38) (11) (31) (36) (31) (30) (660) (5.0) (39) (36) 6 (150) 14 (356) 233 (11) (20) (38) 15.4 2.0 R (47,71) (190) (26) (13.5) 9.5 10.0 6 (150) 14 (356) 233 (11) (20) 19 34.2 2.0 N (49.91) (190) (26) 13.5 9.5 10.0 6 (150) 14 (356) 233 (11) 2.0 1.9 34.2 2.0 N (39) 130) (26) 13.5 9.5 10.0 8 (20) 14 (356) 233 (11) 2.0 1.9 2.0 2.0			(,	<u>14</u>	(356)	233	(105)	(51)	(48)			U	(180)	(14.0)	(660)	(4.1)	(3.6)	(3.6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	(125)	12	(305)	223	(43)	(20)	(38)			R	(235)	(13.0)	(660)	(5.0)	(3.9)	(3.6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(- /	<u>14</u>	(356)	233	(105)	(51)	(48)			R	(246)	(13.0)	(660)	(5.0)	(3.9)	(3.6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				12	(305)	223	(43)	(20)	(38)			F	(308)	(13.0)	(660)	(6.1)	(4.3)	(4.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6	(150)	<u>14</u>	(356)	233	(105)	(51)	(48)				(322)	(13.0)	(660)	(6.1)	(4.3)	(4.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				16	(406)	233	(105)	(51)	(48)			N	(322)	(13.0)	(660)	(6.1)	(4.3)	(5.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				12	(305)	223	(56)	(28)	(38)			т	(530)	(13.0)	(660)	(8.2)	(6.6)	(5.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	(200)	<u>14</u>	(356)	233	(105)	(51)	(48)				(503)	(13.0)	(660)	(8.2)	(6.6)	(5.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				16	(406)	233	(105)	(51)	(48)			т	(503)	(13.0)	(660)	(8.2)	(6.6)	(5.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				14	(356)	223	(56)	(28)	(38)			F	(755)	(13.0)	(660)	(14.1)	(7.7)	(6.8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10	(250)	16	(406)	223	(56)	(28)	(28)				(755)	(13.0)	(660)	(14.1)	(7.7)	(6.8)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(457)	233	(120)	(61)	(61)			5	(774)	(13.0)	(660)	(14.1)	(7.7)	(7.2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(356)		(56)	(28)	(38)			т	(1018)	(13.0)	(660)	(18.1)	(11.0)	(7.2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	(300)		(406)		(56)	(28)	(28)			I	(1018)	(13.0)	(660)	(18.1)	(11.0)	(7.2)
					(457)		(120)	(61)	(61)			Ν	(1045)	(13.0)	(660)	(18.1)	(11.0)	(7.2)
\sim 10 (177) 202 4.7 2.4 2.4 9.1 2.0 \sim 210.18 130 26 48.5 27.0 16.0		14	(350)		(406)		(56)	(28)	(38)			G	(1320)	(9.0)	(660)	(22.0)	(12.3)	(7.2)
	/			<u>18</u>	(457)	233	4.7	2.4	2.4				(1356)		(660)	48.5	27.0 (12.3)	(7.2)
Call Toll Free: 1-866-711-4673 We Ship WebSales@GoodyearRubberProducts.com World Wid		D	Y	EA	R									J	V			-

P	RC		

Tabl	e 4: S	izes •	Move	ments	• For	ces •	Weigh	its						See	e Notes I	Below
	(_	_ w	2		ovement C leutral Pos			Spring Rate Capability Based o Movement at Zero Pressure Con		Opera Cond	ating ⁴ itions		Weights ⁵ Ibs / (kgs)	
EXPANSION Joint Size	Nom. I.D. x Inch / (mm)	NEUTRAL	LENGIH Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs per 1" rated Compression Force lbs Force lbs Force lbs per 1" rated Latreral Deflection Force Angular Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
14	(350)	20	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	18.9	2.0		210.18 (1356)	130 (9.0)	26 (660)	48.5 (22.0)	27.0 (12.3)	20.0 (9.1)
		16	(406)	223	4.0 (102)	2.0 (51)	2.0 (51)	10.5	2.0	U N	257.54 (1662)	115 (8.0)	26 (660)	55.0 (24.9)	33.5 (15.2)	20.0 (9.1)
16	(400)	<u>18</u>	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	16.7	2.0	D	264.74 (1708)	115 (8.0)	26 (660)	55.0 (24.9)	33.5 (15.2)	20.0 (9.1)
		20	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	16.7	2.0	E R	264.74 (1708)	115 (8.0)	26 (660)	55.0 (24.9)	33.5 (15.2)	20.0 (9.1)
		16	(406)	223	4.0 (102)	2.0 (51)	2.0 (51)	9.3	2.0	C	316.59 (2043)	115 (8.0)	26 (660)	66.0 (29.9)	34.0 (15.5)	21.0 (9.5)
18	(450)	<u>18</u>	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	14.9	2.0	U	325.50 (2100)	115 (8.0)	26 (660)	66.0 (29.9)	34.0 (15.5)	21.0 (9.5)
		20	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	14.9	2.0	R R	325.50 (2100)	115 (8.0)	26 (660)	66.0 (29.9)	34.0 (15.5)	21.0 (9.5)
20	(500)	18	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	13.5	2.0	E	392.62 (2533)	115 (8.0)	26 (660)	78.0 (35.4)	38.0 (17.3)	21.0 (9.5)
20	(500)	<u>20</u>	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	13.5	2.0	N T	392.62 (2533)	115 (8.0)	26 (660)	78.0 (35.4)	38.0 (17.3)	21.0 (9.5)
24	(600)	18	(457)	223	4.8 (120)	2.4 (61)	2.2 (55)	14.0	2.0	т	562.82 (3631)	100 (7.0)	26 (660)	91.5 (41.5)	48.0 (21.8)	32.0 (14.5)
24	(000)	<u>20</u>	(508)	233	6.0 (150)	3.0 (75)	2.7 (69)	14.0	2.0	E	562.03 (3626)	100 (7.0)	26 (660)	91.5 (41.5)	48.0 (21.8)	32.0 (14.5)
30	(750)	18	(457)	223	4.8 (120)	2.4 (61)	2.2 (55)	11.3	2.0	S T	798.58 (5152)	90 (6.0)	26 (660)	131.0 (59.4)	63.0 (28.6)	32.0 (14.5)
30	(750)	<u>20</u>	(508)	233	6.0 (150)	3.0 (75)	2.7 (69)	11.3	2.0	I	842.27 (5434)	90 (6.0)	26 (660)	131.0 (59.4)	63.0 (28.6)	32.0 (14.5)
24	(000)	18	(457)	223	4.8 (120)	2.4 (61)	2.2 (55)	9.5	2.0	N G	1217.14 (7873)	90 (6.0)	26 (660)	157.0 (71.2)	76.0 (34.5)	43.0 (19.5)
36	(900)	<u>20</u>	(508)	233	6.0 (150)	3.0 (75)	2.7 (69)	9.5	2.0	C	1179.09 (7607)	90 (6.0)	26 (660)	157.0 (71.2)	76.0 (34.5)	43.0 (19.5)

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

Larger diameters available upon request.

Neutral lengths underlined are the recommended minimum lengths.

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar NOTES

- 1. The degree of angular movement is based on the maximum rated extension.
- Torsional movement is expressed when the expansion joint is at neutral length

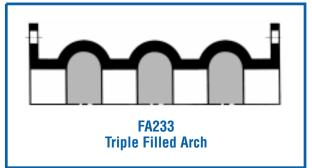
To determine "end thrust", multiply thrust factor by operating pressure of system.

 Pressure rating is based on 170°F operating theorem with a 41 safet practice. A higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated or working pressure for 10 minutes is available upon request.

Weights are approximate and vary due to OAL.

Series 230

GOODYEAR


Control rod unit weight consists of one rod with washers, nuts and two control rod plates. Multiply number of control rods needed for application (as specified in the Fluid Sealing Association's Technical Handbook) to determine correct weights.

Filled Arch Rubber Expansion Joints

Known as Style FA233 or Style FA223, the Series FA230 Rubber Expansion Joints are designed to eliminate flow turbulence and collection of solids in the arch core. Filled Arch Rubber Expansion Joints can be found in applications such as sludge, slurries or other heavy solids where material entrapment, high flow velocity or high abrasion conditions exist. Filled arch products are manufactured with seamless tube and are built as an integral part of the carcass. Although the tube is made of a low durometer filler stock, movement ratings of the Style FA233 or Style FA223 are 50% less than those

movements listed in the table above PROCO can manu-

We Ship World Wide

LIMIT RODS & CONTROL RODS

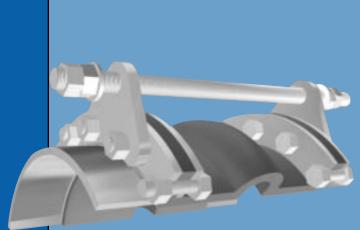


Figure 1: Limit Rod

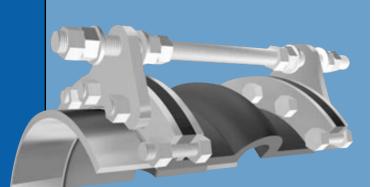


Figure 2: Control Rod

Definition — A control unit assembly is a system of two or more control rod units (limit rods, tie rods or compression sleeves) placed across an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The failure of an anchor or some other piece of equipment in a pipeline can cause excessive motion. The control unit assemblies can be set at the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an additional safety factor and can minimize possible damage to adjacent equipment.

Use of Control Units with Rubber Expansion Joints

Rubber expansion joints must be installed between two fixed anchor points in a piping system. The pipe system must be rigidly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capable of withstanding the line thrusts generated by internal pressure or wide temperature fluctuations. When proper anchoring cannot be provided, CONTROL UNITS ARE REQUIRED.

Listed below are three (3) control unit configurations supplied by PROCO and are commonly used with rubber expansion joints in piping systems.

Figure 1 — Known as a "LIMIT ROD", this control unit configuration will allow an expansion joint to extend to a predetermined extension setting. Nuts shall be field set to no more than the maximum allowable extension movement of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. Consult the systems engineer for proper nut settings prior to system operation.

Figure 2 — Known as a "CONTROL ROD", this control unit configuration is used to allow specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint axial extension) movements. Nuts shall be field set to no more than the maximum allowable extension or compression of a rubber expansion joint. Refer to Tables 2, 3 or 4 in this Manual.

Internal and external nuts can also be field set to allow for no movement in the horizontal plane. This setting will allow the rubber to move laterally while keeping expansion joint thrust forces low on adjacent equipment. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper nut settings prior to system operation.

Figure 3 — Known as a "COMPRESSION SLEEVE", this configuration is used to allow for specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint extension) movements. Nuts shall be field set to no more than the maximum allowable extension of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. PROCO will manufacture each compression sleeve to allow for no axial movement unless otherwise specified by the purchaser. Compression sleeves shall be field trimmed to meet required allowable axial movement as set forth by system requirements. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper sleeve lengths prior to system operation.

Important Control Rod Considerations — The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifying engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition). PROCO engineers its control unit assemblies to system requirements. Our designs incorporate an allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Therefore, it is important to provide pressure and temperature ratings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent mating flange thickness or mating specifications to insure correct rod lengths are provided.

> We Ship World Wide

Series 230

GOODYEAR Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

COMPRESSION SLEEVES

Also available with spherical washer

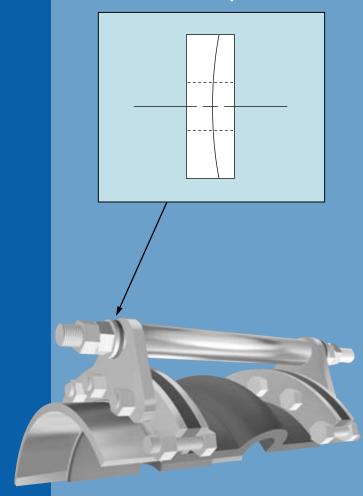
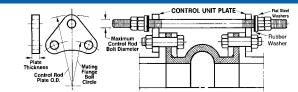
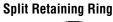



Figure 3: Compression Sleeves

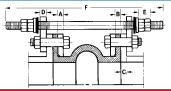
Series 230

Dame 13 of 16

Table	e 5: Co	ntrol Unit Pla	ite Deta	il		See Notes	Below
	AL SIZE (mm)	CONTROL R PLATE O. Inch / (mr	D.	MAXIM Plate Inch / (THK	MAXIM ROD DIAI Inch / (1	METER
1	(25)	8.375	(212.7)	0.625	(15.9)	0.625	(15.9)
1.25	(32)	8.750	(222.3)	0.625	(15.9)	0.625	(15.9)
1.5	(40)	9.125	(231.8)	0.375	(9.5)	0.625	(15.9)
2	(50)	10.125	(257.2)	0.500	(12.7)	0.625	(15.9)
2.5	(65)	11.125	(282.6)	0.500	(12.7)	1.000	(25.4)
3	(80)	11.625	(295.3)	0.500	(12.7)	1.000	(25.4)
3.5	(90)	12.625	(320.7)	0.625	(15.9)	1.000	(25.4)
4	(100)	13.125	(333.4)	0.625	(15.9)	1.000	(25.4)
5	(125)	14.125	(358.8)	0.500	(12.7)	1.000	(25.4)
6	(150)	15.125	(384.2)	0.500	(12.7)	1.000	(25.4)
8	(200)	19.125	(485.8)	0.625	(15.9)	1.000	(25.4)
10	(250)	21.625	(549.3)	0.750	(19.1)	1.000	(25.4)
12	(300)	24.625	(625.5)	0.750	(19.1)	1.000	(25.4)
14	(350)	26.625	(676.3)	0.750	(19.1)	1.000	(25.4)
16	(400)	30.125	(765.2)	1.000	(25.4)	1.250	(31.8)
18	(450)	31.625	(803.3)	1.000	(25.4)	1.250	(31.8)
20	(500)	34.125	(866.8)	1.000	(25.4)	1.250	(31.8)
22	(550)	36.125	(917.6)	1.000	(25.4)	1.250	(31.8)
24 26	(600)	38.625 40.875	(981.1)	1.000	(25.4)	1.250	(31.8)
20 28	(650)	40.875	(1038.2)	1.000	(25.4)	1.250 1.500	(31.8)
20 30	(700)	44.125	(1120.8)	1.250 1.500	(31.8)	1.500	(38.1)
32	(750) (800)	49.375	(1177.9) (1254.1)	1.250	(38.1) (31.8)	1.500	(38.1) (38.1)
34	(800)	52.375	(1234.1)	1.500	(38.1)	1.750	(44.5)
36	(900)	54.625	(1387.5)	1.750	(44.5)	1.750	(44.5)
38	(950)	57.375	(1367.3)	1.500	(38.1)	1.750	(44.5)
40	(1000)	58.375	(1482.7)	1.500	(38.1)	1.500	(38.1)
42	(1050)	61.625	(1565.3)	1.500	(38.1)	1.750	(44.5)
44	(1100)	63.875	(1622.4)	1.500	(38.1)	1.750	(44.5)
46	(1150)	65.875	(1673.2)	1.500	(38.1)	1.750	(44.5)
48	(1200)	68.125	(1730.4)	1.750	(44.5)	1.750	(44.5)
50	(1250)	70.375	(1787.5)	1.500	(38.1)	1.750	(44.5)
52	(1300)	73.625	(1870.1)	1.750	(44.5)	2.000	(50.8)
54	(1350)	75.875	(1927.2)	2.000	(50.8)	2.000	(50.8)
56	(1400)	78.375	(1990.7)	2.000	(50.8)	2.000	(50.8)
58	(1450)	80.625	(2047.9)	2.000	(50.8)	2.000	(50.8)
60	(1500)	82.625	(2098.7)	2.000	(50.8)	2.000	(50.8)
66	(1650)	89.625	(2276.5)	2.000	(50.8)	2.000	(50.8)
68	(1700)	91.875	(2333.6)	2.000	(50.8)	2.000	(50.8)
72	(1800)	96.125	(2441.6)	2.000	(50.8)	2.000	(50.8)
78	(2000)	103.125	(2619.4)	2.000	(50.8)	2.250	(57.2)
84	(2150)	109.875	(2790.8)	2.250	(57.2)	2.250	(57.2)
90	(2300)	117.125	(2975.0)	2.500	(63.5)	2.500	(63.5)
96	(2450)	124.625	(3165.9)	2.750	(69.9)	2.750	(69.9)
102	(2500)	131.375	(3336.5)	2.500	(63.5)	2.750	(69.9)
108	(2750)	138.125	(3508.4)	2.500	(63.5)	2.750	(69.9)
120	(3050)	152.125	(3864.0)	2.500	(63.5)	3.000	(76.2)
132	(3350)	166.625	(4232.2)	2.500	(63.5)	3.250	(82.6)
144	(3650)	180.750	(4591.1)	2.500	(63.5)	3.500	(88.9)

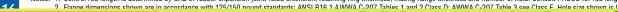

Metric Conversion: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar Number of Control Units is dependent upon pressure and temperature of system. Refer to Fluid Sealing Association's - REJ Division Manual, Appendix C (Sixth Edition) for *minimum* number of control units (per pressure rating) required for a rubber expansion joint when specified. Values listed in this table are maximum values based on PROCO'S engineering data.

WebSales@GoodyearRubberProducts.com


Control rod plate O.D. installed dimension is based on aximum O.D. PROCO would supply (Figures 2 and 3.) GOODYEAR RUBBER PRODUCTS INC. Call Toll Free: 1-866-711-467 We Ship

World Wide

Series 230 Drilling Chart

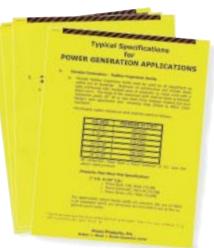

A - Retaining Ring Thickness

- **B** Rubber Flange Thickness
- **C** Adjacent Mating Flange Thickness
- D Control Unit Plate Thickness
- E Double Nut Thickness is determined by Control Rod Diameter
- F Control Rod Bolt Length is determined by A through E + OAL¹

Tabl	e 6:	Standard Dri	lling for PR	OCO Series	230/220	Rubber Ex	pansion Joints	Thicknes	ss of Mat	erials for Pl	ROCO Ser	ies 230/220 Rubbe	r Expansior	Joints
NO	MINAL		125/	150# Flange	e Dimensi	ons ²			Materi	al Thicknes	s' for Bo	lt Length Requirem	ents	
PIP EXP/ JOII	E SIZE ANSION VT I.D. / (mm)	FLANGE Inch / (r		BOLT CI Inch / (I		NO. Of Holes	SIZE OF HOLES	RETAININ Thicki Inch / (VESS	RUBBER THICK Inch /	NESS	ADJACENT Mating Flange Thickness	MAX. CON ROD P Thicki Inch / (LATE Ness
1	(25)	4.25	(107.95)	3.13	(79.50)	4	0.625 (15.9)	0.375	(9.53)	0.472			0.625	(15.9)
1.25	(32)	4.63	(117.60)	3.50	(88.90)	4	0.625 (15.9)	0.375	(9.53)	0.472	(11.99)		0.625	(15.9)
1.5	(40)	5.00	(127.00)	3.88	(98.55)	4	0.625 (15.9)	0.375	(9.53)	0.472	(11.99)	С	0.375	(9.5)
2	(50)	6.00	(152.40)	4.75	(120.65)	4	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	U	0.500	(12.7)
2.5	(65)	7.00	(177.80)	5.50	(139.70)	4	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	S	0.500	(12.7)
3	(80)	7.50	(190.50)	6.00	(152.40)	4	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	Т	0.500	(12.7)
3.5	(90)	8.50	(215.90)	7.00	(177.80)	8	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	0	0.625	(15.9)
4	(100)	9.00	(228.60)	7.50	(190.50)	8	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	М	0.625	(15.9)
5	(125)	10.00	(254.00)	8.50	(215.90)	8	0.875 (22.2)	0.375	(9.53)	0.551	(14.00)	E	0.500	(12.7)
6	(150)	11.00	(279.40)	9.50	(241.30)	8	0.875 (22.2)	0.375	(9.53)	0.551	(14.00)	R	0.500	(12.7)
8	(200)	13.50	(342.90)	11.75	(298.45)	8	0.875 (22.2)	0.375	(9.53)	0.630	(16.00)		0.625	(15.9)
10	(250)	16.00	(406.40)	14.25	(361.95)	12	1.000 (25.4)	0.375	(9.53)	0.630	(16.00)	т	0.750	(19.1)
12	(300)	19.00	(482.60)	17.00	(431.80)	12	1.000 (25.4)	0.375	(9.53)	0.748	(19.00)	0	0.750	(19.1)
14	(350)	21.00	(533.40)	18.75	(476.25)	12	1.125 (28.6)	0.375	(9.53)	0.866	(22.00)		0.750	(19.1)
16	(400)	23.50	(596.90)	21.25	(539.75)	16	1.125 (28.6)	0.375	(9.53)	0.866	(22.00)	D	1.000	(25.4)
18	(450)	25.00	(635.00)	22.75	(577.85)	16	1.250 (31.8)	0.375	(9.53)	0.866	(22.00)	E	1.000	(25.4)
20	(500)	27.50	(698.50)	25.00	(635.00)	20	1.250 (31.8)	0.375	(9.53)	0.984	(25.00)	Т	1.000	(25.4)
22	(550)	29.50	(749.30)	27.25	(692.15)	20	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	E	1.000	(25.4)
24	(600)	32.00	(812.80)	29.50	(749.30)	20	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	R	1.000	(25.4)
26	(650)	34.25	(869.95)	31.75	(806.45)	24	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	м	1.000	(25.4)
28	(700)	36.50	(927.10)	34.00	(863.60)	28	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	I	1.250	(31.8)
30	(750)	38.75	(984.25)	36.00	(914.40)	28	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	Ν	1.500	(38.1)
32	(800)	41.75	(1060.45)	38.50	(977.90)	28	1.625 (41.3)	0.375	(9.53)	0.984	(25.00)	Е	1.250	(31.8)
34	(850)	43.75	(1111.25)		1028.70)	32	1.625 (41.3)	0.375	(9.53)		(25.00)		1.500	(38.1)
36	(900)	46.00	(1168.40)	· `	1085.85)	32	1.625 (41.3)	0.375	(9.53)		(25.00)	м	1.750	(44.5)
38	(950)	48.75	(1238.25)	45.25 (32	1.625 (41.3)	0.375	(9.53)		(25.00)	Α	1.500	(38.1)
40	(1000)	50.75	(1289.05)	47.25 (36	1.625 (41.3)		(9.53)		(25.00)	т	1.500	(38.1)
42	(1050)	53.00	(1346.20)	49.50 (36	1.625 (41.3)	0.375	(9.53)	1.181	(29.99)	I	1.500	(38.1)
44	(1100)	55.25	(1403.35)	51.75 (40	1.625 (41.3)	0.375	(9.53)	1.181	(29.99)	Ν	1.500	(38.1)
46	(1150)	57.25	(1454.15)	53.75 (40	1.625 (41.3)	0.375	(9.53)	1.181	(29.99)	G	1.500	(38.1)
48	(1200)	59.50		56.00 (44	1.625 (41.3)	0.375	(9.53)		(29.99)		1.750	(44.5)
50	(1250)	61.75	(1568.45)	58.25 (44	1.875 (47.6)	0.375	(9.53)		(29.99)	F	1.500	(38.1)
52	(1300)	64.00	(1625.60)	60.50 (44	1.875 (47.6)	0.375	(9.53)	1.181	(29.99)	L	1.750	(44.5)
54	(1350)	66.25		62.75 (44	2.000 (50.8)	0.375	(9.53)		(29.99)	Ā	2.000	(50.8)
56	(1400)	68.75		65.00 (48	1.875 (47.6)	0.375	(9.53)		(29.99)	N	2.000	(50.8)
58	(1450)	71.00		67.25 (48	1.875 (47.6)		(9.53)	1.181		G	2.000	(50.8)
60	(1500)	73.00		69.25 (52	2.000 (50.8)		(9.53)	1.181		E	2.000	(50.8)
66	(1650)	80.00		76.00 (52	2.000 (50.8)		(9.53)	1.181			2.000	(50.8)
68	(1700)	82.25		78.25 (56	2.000 (50.8)			1.181		т	2.000	(50.8)
72	(1800)	86.50		82.50 (60	2.000 (50.8)			1.181		Ĥ	2.000	(50.8)
78	(1950)	93.00		89.00 (64	2.125 (53.0)			1.188		1	2.000	(50.8)
84	(2100)	99.75		95.50 (64	2.250 (57.2)	0.375		1.188		Ċ	2.250	(57.2)
90	(2250)	106.50		102.00 (68	2.375 (60.3)	0.375		1.188		ĸ	2.500	(63.5)
96	(2400)	113.25		108.50 (68	2.500 (63.5)			1.188		N	2.750	(69.9)
102	(2550)	120.00		114.50 (. ,	72	2.625 (66.7)			1.188		E	2.500	(63.5)
108	(2700)	126.75		120.75 (72	2.625 (66.7)		(9.53)	1.188		S	2.500	(63.5)
120	(3000)	140.25		132.75 (76	2.875 (73.0)			1.188		S	2.500	(63.5)
132	(3300)	153.75		145.75 (80	3.125 (79.4)			1.188			2.500	(63.5)
144	(3600)	167.25				84	3.375 (85.7)	0.375		1.188			2.500	(63.5)
							essure: PSIG x .069		(0.00)		(30.10)		2.000	(00.0)

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar

Notes: 1. Control rod length is determined by OAL of rubber expansion joint, rated extension, retaining ring thickness, mating flange thickness and number of nuts. Consult PROCO for rod lengths. roer than AWWA standard


Series 230

PROCO YOUR EXPANSION JOINT SOURCE

PROCO PRODUCTS, INC. can offer our customers the largest expansion joint product selection available in today's market! Whether it be rubber, molded PFA, fabric or metal expansion joints, PROCO can offer a product to meet your needs. And remember ... if PROCO doesn't have the products needed for your application, nobody does!

These PROCO products complement the Series 230/220

The PROCO Series RE (Eccentric Reducer) Rubber Expansion Joints are in stock in neoprene and butyl elastomers. Phone us and get your copies of PROCO's Typical Specifications for your HVAC, Water/ Waste Water, Power Generation, and Plastic/FRP/Glass piping applications!

The PROCO Series RC (Concentric Reducer) Rubber Expansion Joints are in stock in a multitude of sizes.

The PROCO Series Series 300 Rubber Pipe can be used to eliminate piping vibration.

Call Toll Free: 1-866-711-467

WebSales@GoodyearRubberProducts.

The PROCO Series 251/BT PTFE and FEP Lined Rubber Expansion Joints are are an excellent choice for highly corrosive fluid pipelines.

We Ship

World Wide

Contact PROCO for a complete catalog!

Series 230

PROCO PRODUCTS, INC. The Expansion Joint People WE COVER THE WORLD.

NUMBER ONE IN SERVICE!

- Same-day shipping
- Knowledgeable sales staff that has an average of 12 years experience with expansion joints
- Daily UPS[®] and ROADWAY[®] pick-up
- Preselected freight carriers to minimize "interline transfer"
- Emergency service for nights, weekends, and even holidays
- Complete expansion joint product line
- Largest inventory in **North America**

WebSales@GoodyearRubberProducts.com

NATIONWIDE AND CANADA

INTERNATIONAL

We Ship World Wide

EXAMPLE 1 CONTROL 1 CONTR

The PROCO Series 231/BT PTFE lined expansion joints are designed for tough demanding corrosive chemical applications, as found in: **Chemical & Petrochemical Process Facilities and Highly Corrosive** Industrial Piping & Pollution Control Systems. The greatest usage of the Series 231/BT is found in the Pulp and Paper Industry where the ability to resist corrosive attack at elevated temperature and pressure is unmatched by metallic, plastic or other competitive expansion joints. PROCO's Series 231 PTFE lined expansion joints can easily handle such pulp/paper applications as: White-Green-Black liquor, bleach plant chlorination and caustic extraction stages. Chemically resistant against the entire pH range, PROCO Series 231 PTFE expansion joints are designed to handle practically every chemical plant application. Installed next to mechanical equipment or between anchor points of a piping system, specify the PROCO 231/BT to: (1) Absorb Pipe Movements/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibrations, (4) Compensate Alignment/Offset, (5) Eliminate Electrolytic Action and Electrolysis, (6) Protect Against Start-Up/Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO.

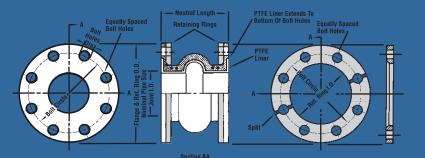
Series 231/BT. The new and improved PROCO Series 231/BT will complement the existing PROCO Series 251/BT expansion joint. This new molded product has been completely re-engineered to provide improved strength, flexibility and movement capabilities. Manufactured utilizing tire cord industry technology, the Series 231/BT combines woven polyester fabric and polyester tire cord into a fabric matrix and bonded with a Chlorobutyl elastomer that is reinforced with wire and bonded to a PTFE liner to create a product with greater operating performance. Note: The PTFE liner extends to the bolt circle of the bottom of bolt holes.

Greater Movements with a Lower/Wider Arch Profile. The movements for the PROCO Series 231/BT exceed the specification of the Fluid Sealing Association's, Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a new and improved lower, wider profile arch, more axial compression and extension coupled with lateral and angular movements can be obtained without increasing the face-to-face requirements. For greater movements based on re-engineering and new product construction for highly corrosive piping installations, specify the PROCO Series 231/BT PTFE lined expansion joints.

Chemical Service Capability at Minimal Cost. Expensive, exotic metal expansion joint for low temperature service can be replaced with the PROCO Series 231/BT PTFE lined expansion joints. Engineered to operate up to 225 PSIG and 250°F, the PROCO Series 231/BT can be specified for a wide range of piping system requirements. Our standard stock is furnished with an exterior Chlorobutyl cover. Compared to metal, plastic or other rubber-backed competitive products, you will invest less and have access to in-stock availability with the high quality PROCO Series 231/BT.

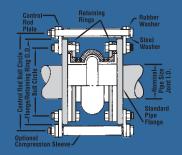
Specifications Met. PROCO has assigned conservative pressure ratings to the Series 231/BT PTFE lined rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's, Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Series C. The pressure ratings for the Series 231/BT PTFE lined rubber expansion joints have been fully tested and are based on a minimum four-to-one safety factor. For pressure protection with confidence, specify the PROCO Series 231/BT.

Prevents Electrolysis and Electrolytic Action. In Chemical applications when metallic expansion joints are used, they are generally of a metal dissimilar from the pipeline. This may create an electrolytic galvanic action that could be destructive to the connector equipment or piping system. The use of the rubber-backed PROCO 231/BT PTFE lined expansion joints prevents this potential hazard. Additionally, our 231/BT expansion joints are nonconductive and eliminate the metal-to-metal contact at the flange face thus stopping electrolysis.


Absorbs Vibration • Noise • Shock. The PROCO Series 231/BT PTFE lined rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the PTFE lined/rubber elastomer expansion joint, not related to piping. Install the Series 231/BT in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems specify the PROCO Series 231/BT.

Large Inventories Mean Same-Day Shipment. We maintain the largest inventory of expansion joints in the world. Rubber, PTFE Lined, Plastic or Metal Hose — PROCO can ship the products you need when you need them! In fact, when it comes to expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.



PTFE lined rubber expansion joints

Table 2: Sizes • Movements • Pressures • Weights • Drilling

	2: 312	$es \cdot ivic$	overne	ILS • P	ressure	es • we	eignis		19									
zω	×-		÷	2	31/BT Move	ement Capa	bility: Fron	n Neutral P		Operating (Conditions ⁵	Weigh	ts in Ibs / (kgs) ⁶	Flange	Dimensions	and Drill	ing ⁸
EXPANSION JOINT SIZE	Nom. I.D. Inch / (mm	NEUTRAL	Inch / (mm	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ² Deflection Degrees	Torsional ³ Rotation Degrees	Thrust Factor ⁴ In2 / (cm2)	Positive PSIG / (Bar)	Vacuum Inches of Hg / (mm of Hg)	Joint Assembly	Retaining Ring Set	Control Unit ⁷ Assembly	0.D. of Exp. Joint / Ring Inch / (mm)	Bolt Circle Inch / (mm)	Number of Holes	Size of Holes Inch / (mm)
1.5	(40)				0.625	0.625	28.0°	1°	1.8 (11)	225 (15.5)	30 (762)	1.5 (0.7)	2.5 (1.1)	2.3 (1.0)	5.0 (127.0)	3.88 (98.6)	4	0.625 (15.88)
2	(50)				0.625	0.625	25.0°	1°	3.1 (20)	225 (15.5)	30 (762)	2.0 (0.9)	4.0 (1.8)	2.8 (1.3)	6.0 (152.4)	4.75 (120.65)	4	0.750 (19.05)
2.5	(65)				0.625	0.625	20.2°	1°	4.9 (32)	225 (15.5)	30 (762)	2.5 (1.2)	4.5 (2.0)	2.8 (1.3)	7.0 (177.8)	5.50 (139.7)	4	0.750 (19.05)
3	(80)	6	(150)	1.25	0.625	0.625	18.0°	1°	7.1 (46)	225 (15.5)	30 (762)	3.0 (1.4)	5.5 (2.5)	2.8 (1.3)	7.5 (190.5)	6.00 (152.4)	4	0.750 (19.05)
4	(100)	0	(150)	(32)	0.625	0.625	14.2°	1°	12.6 (81)	225 (15.5)	30 (762)	4.0 (1.8)	8.0 (3.6)	2.8 (1.3)	9.0 (228.6)	7.50 (190.5)	8	0.750 (19.05)
5	(125)				0.625	0.625	13.0°	1°	19.6 (127)	225 (15.5)	30 (762)	5.0 (2.3)	8.5 (3.9)	4.0 (1.8)	10.0 (254.0)	8.50 (215.9)	8	0.875 (22.23)
6	(150)				0.625	0.625	12.2°	1 °	28.3 (182)	225 (15.5)	30 (762)	7.0 (3.2)	9.5 (4.3)	4.0 (1.8)	11.0 (279.4)	9.50 (241.3)	8	0.875 (22.23)
8	(200)				0.625	0.625	12.0°	1°	50.3 (324)	210 (14.5)	30 (762)	11.0 (5.0)	14.5 (6.6)	8.0 (3.6)	13.5 (342.9)	11.75 (298.4)	8	0.875 (22.23)
10	(250)				1.0 (25)	1.0 (25)	11.9°	1°	78.5 (507)	210 (14.5)	30 (762)	19.0 (8.6)	17.0 (7.7)	10.0 (4.5)	16.0 (406.4)	14.25 (362.0)	12	1.000 (25.40)
12	(300)				1.0 (25)	1.0 (25)	11.3°	1°	113.1 (730)	210 (14.5)	30 (762)	29.0 (13.2)	24.5 (11.0)	10.0 (4.5)	19.0 (482.6)	17.00 (431.8)	12	1.000 (25.40)
14	(350)	8	(200)	2.0	1.0 (25)	1.0 (25)	11.5°	1°	153.9 (993)	150 (10.0)	30 (762)	38.0 (17.2)	27.0 (12.3)	12.0 (5.4)	21.0 (533.4)	18.75 (476.3)	12	1.125 (28.58)
16	(400)	•	(200)	(50)	1.0 (25)	1.0 (25)	10.1°	1 °	201.1 (1297)	150 (10.0)	30 (762)	44.0 (20.0)	33.5 (15.2)	15.0 (6.8)	23.5 (596.9)	21.25 (539.8)	16	1.125 (28.58)
18	(450)				1.0 (25)	1.0 (25)	8.9°	1 °	254.5 (1642)	150 (10.0)	30 (762)	49.0 (22.2)	34.0 (15.5)	16.5 (7.2)	25.0 (635.0)	22.75 (577.9)	16	1.250 (31.75)
20	(500)				1.0 (25)	1.0 (25)	8.1°	1°	314.2 (2027)	150 (10.0)	30 (762)	54.0 (24.5)	38.0 (17.3)	16.5 (7.2)	27.5 (698.5)	25.00 (635.0)	20	1.250 (31.75)
24	(600)				1.5 (38)	1.5 (38)	9.0°	1 °	452.4 (2919)	110 (7.5)	28 (711)	60.0 (27.2)	48.0 (21.8)	20.0 (9.0)	32.0 (812.8)	29.50 (749.3)	20	1.375 (34.93)
30	(750)	10	(250)	3.0 (75)	1.5 (38)	1.5 (38)	7.5°	1°	706.9 (4560)	100 (7.0)	28 (711)	88.0 (44.0)	63.0 (28.6)	29.5 (13.3)	38.8 (984.3)	36.00 (914.4)	28	1.375 (34.93)
36	(900)				1.5 (38)	1.5 (38)	6.7°	1°	1017.9 (6567)	100 (7.0)	28 (711)	112.0 (50.8)	76.0 (34.5)	43.0 (19.5)	46.0 (1168.4)	42.75 (1085.9)	32	1.625 (41.28)

Notes:

- 1. Teflon liner extends to bottom of bolt holes.
- 2. The degree of angular movement is based on the maximum rated extension.
- 3. Torsional movement is expressed when the expansion joint is a neutral length.
- To determine "end thrust", multiply thrust factor by operating pressure of system.
 Pressure rating is based on 194°F operating temperature. At higher temperature the pressure rating is slightly reduced.
- 6. Weights are approximate.
- Control unit weight consists of one rod, four washers, three nuts and two control rod plates. Multiply number of control units needed for application (as specified in the Fluid Sealing Association Technical Handbook) to determine correct weights.
 Dimensions shown are in accordance with 125/150# standards of ANSI B-16.1,
- B-16.24, B-16.5; AWWA C-207 Table 1 and 2 Class D.

GOODYEAR

PROCO™ Series 231/BT Products Are Designed To Absorb Different Movements Concurrently.

Axial Compression

Angular Movement Bending Of The Centerline

Lateral Movement

Torsional Movement Rotation About The Centerline (Twist)

Absorbing Vibration

Axial Elongation

Warning: Expansion joints may operate in pipelines or equipment carrying fluids and/or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect personnel in the event of leakage or splash. Note: Piping must be properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and control units are always recommended to prevent damage in the event other anchoring in the system fails. Properties applications shown throughout this data sheet are typical. This information does not constitute a warranty or representation and we assume no legal responsibility or obligation with respect thereto and the use to which such information may

DISTRIBUTED BY:

Series

-

The Expansion Joint People

GOODYEAR RUBBER PRODUCTS INC. Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

We Ship World Wide SERIES **230/220** spool type wide arch rubber expansion joints

PROCO Series 230, Styles 231, 232, & 233 Non-Metallic Expansion Joints are designed for tough, demanding industrial applications, as found in: Chemical/Petrochemical Plants, Industrial Process Piping Systems, Marine Services, Power Generation Plants, Pulp/Paper Plants, Steel Mills, Water/Wastewater and Pollution Control Systems. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series 230 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO!

Series 230 Replaces Series 220. The new and improved PROCO Series 230 replaces the PROCO Series 220 rubber expansion joints. (Series 220 products will be available only in short neutral lengths.) This new hand-built product has been completely re-engineered to provide improved strength, flexibility, movement and spring rate capabilities. Manufactured utilizing tire industry technology, the Series 230 combines woven nylon fabric and nylon tire cord into a fabric matrix bonded with elastomer and reinforced with wire to create a product with greater operating performance. The nomenclature for the new PROCO Series 230 is as follows:

Single Arch Series 230, Style 231 Double Arch Series 230, Style 232 Triple Arch Series 230, Style 233

Greater Movements With A Lower/Wider Arch Profile. The movements for the PROCO Series 230 exceed the specification of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a new and improved lower, wider profile arch, more axial compression and axial extension coupled with lateral misalignment, angular and torsional movements can be obtained without increasing the face-to-face requirements. Installation of the Series 230 in a piping system will negate the need for long and expensive multi-arch products. For greater movements based on reengineering and new product construction, specify the PROCO Series 230.

Less Turbulence Or Material Entrapment. The PROCO 230 Series molded integral flange joins the body at a true 90° angle. Our product will install snug against the mating pipe flange without voids. The flange body of the rubber expansion joint is difficult to form and many manufacturers radius the edge angles. The resulting void between the mating flange and the edge angle can create flow turbulence and allow for material entrapment or bacterial growth. You can avoid these problems by specifying PROCO Series 230 rubber expansion joints.

Chemical Or Abrasive Service Capability. Expensive metallic designs for chemical service can be replaced with the more cost-effective PROCO Series 230. Built with low-cost chemical resistant elastomers, such as Chlorobutyl, DuPont Dow Elastomer Hypalon® rubber, EPDM, Natural, Neoprene and Nitrile, assures an expansion joint compatible with fluid being pumped or piped (See Table 1). When handling abrasive products such as any solids or slurries, Natural or Neoprene filled arch products should be specified. Please refer to PROCO "Chemical to Elastomer Guide" for recommendations on elastomer chemical compatibility for piping processes. Exclusive Sealing Bead Means A Quick Seal. PROCO has built an "O-Ring" on each flange face of the Series 230. Available only from PROCO, the Series 230 seals faster with less torque at installation. For these exclusive features, specify the PROCO Series 230 rubber expansion joints.

Specifications Met. PROCO has assigned conservative pressure ratings to the Series 230 rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Series C. The pressure ratings for the Series 230 rubber expansion joints have been fully tested and are based on a minimum four-to-one safety factor. For pressure protection with confidence, specify the PROCO Series 230.

Tested Force Pound And Spring Rate Tables. The Series 230 rubber expansion joints are in accordance with and/or lower than the guidelines for spring rate data as listed in the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a lower, wider arch profile, the PROCO Series 230 will provide more flexibility than conventional spool-type rubber expansion joints. In addition, the lower/wider arch profile coupled with a modified radial tire cord construction will result in lower flange forces. Lower resultant forces mean reduced stress of related piping system components. PROCO is currently testing each rubber expansion joint size and will list actual test data as opposed to listing hypothetical data normally associated with spring rate tables.

Absorbs Vibration • Noise • Shock. The PROCO Series 230 quiet-operating rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the molded elastomer expansion joint, not related to piping. Install the Series 230 in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems, specify the PROCO Series 230.

Wide Service Range With Low Cost. Engineered to operate up to 200 PSIG or up to 250°F, the PROCO Series 230 can be specified for a wide range of piping system requirements. Compared to competitive products, you will invest less money when specifying the engineered design and industrial quality of the PROCO Series 230.

Large Inventory Means Same-Day Shipment. We maintain the largest inventory of elastomeric expansion joints in the world. Every size cataloged up to 72" is in stock in a variety of elastomers. We can ship the products you need when you need them! In fact, when it comes to rubber expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

Table 1:	Available	e Styles •	Materials	s • Tempera	atures			
For Specific E Recommendat	lastomer tions, See:	PROCO [™]	" "Chemic	al To Elas	tomer Gi	ıide"		
PROCO Styl	e Numbers	Cover ²	Tube	Maximum	Branding	F.S.A.	П	
Filled Arch (Single) ⁶	Open Arch (Single) ⁶	Elastomer	Elastomer	Operating Temp. °F (°C)	Label Color	Material Class		
FA231/BB	231/BB	Butyl 4	Butyl ⁴	250° (121°)	Black	STD. III		
FA231/EE	231/EE	EPDM	EPDM	250° (121°)	Red	STD. III		
FA231/NH	231/NH	Neoprene	Hypalon ¹	212° (100°)	Green	STD. II		
FA231/NN 5	231/NN 5	Neoprene	Neoprene	225° (107°)	Blue	STD. II		
FA231/NP	231/NP	Neoprene	Nitrile	212° (100°)	Yellow	STD. II		
FA231/NR	231/NR	Neoprene	Natural	180° (68°)	White	STD. I		
Notes: 1. Hypalo	n is a registere	d trademark of D	uPont Dow Elasto	omers.			Eh 1	Sin 🗨

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

Expansion joint "cover" can be coated with Hypalon® on special order.

3. All products are reinforced with steel and fabric materials.

4 The term "butyl" is synonymous with chlorobutyl (CIIR)

Protecting Piping And Equipment Systems From Stress/Motion

Series 231

We Ship

World Wide

1 (25) 6 (152) 231 1,20 0,60 0,60 0,60 0,40 2,00 2	1 1.25		NEUTRAL	LENGIA 1ch / (mm)	STYLE	2			apability:			on 1" of	Opera	ating ⁴		Weights ⁵	
1 (5) 6 (52) 231 (32) 64 64 65 64 64 65 64 65 64 65 65 64 64 65 65 64 64 65 64 65 64 65 64 65 64 65 65 64 74 74 74 70 76 <th< th=""><th>1 1.25</th><th></th><th></th><th>rengin 1ch / (mr</th><th>NSI0 STY</th><th></th><th></th><th>leutral Pos</th><th>ition</th><th></th><th></th><th></th><th></th><th></th><th></th><th>lbs / (kgs)</th><th></th></th<>	1 1.25			rengin 1ch / (mr	NSI0 STY			leutral Pos	ition							lbs / (kgs)	
1 (25) 6 (152) 231 1,2 0,6 50,6 50,4 2.0 1.25 (32) 6 (152) 231 1,2 0,6 6,0 3.1 2.0 1.5 (40) 6 (152) 231 1,2 0,6 0,6 3.1 2.0 N 7,4 200 2.6 3.0 2.5 <t< th=""><th>1.25</th><th>(25)</th><th></th><th>-</th><th>EXPA</th><th>Axial Compression Inch / (mm)</th><th>Axial Extension Inch / (mm)</th><th>Lateral Deflection Inch / (mm)</th><th>Angular ¹ Deflection Degrees</th><th>Torsional ² Rotation Degrees</th><th>Force lbs Force lbs Compression Force lbs Extension Extension Force th-lbs Force the the the th-lbs Force the the the th-lbs Force the the the th-lbs Force the the th-lbs Force the the the th-lbs Force the the the th-lbs Force the the the the th-lbs Force the the the the th-lbs Force the the the th-lbs Force the the the the the the the the the th</th><th>Thrust Factor ³ In2 / (cm2)</th><th>Positive PSIG/ (Bar)</th><th>Vacuum Inches of Hg/ (mm of Hg)</th><th>Expansion Joint Assembly</th><th>Retaining Ring Set</th><th>Control 6</th></t<>	1.25	(25)		-	EXPA	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs Force lbs Compression Force lbs Extension Extension Force th-lbs Force the the the th-lbs Force the the the th-lbs Force the the the th-lbs Force the the th-lbs Force the the the th-lbs Force the the the th-lbs Force the the the the th-lbs Force the the the the th-lbs Force the the the th-lbs Force the the the the the the the the the th	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control 6
1.25 (a) 6 (b) 2.3 (b) 6.5 0.6 <th0.6< th=""> <th0.6< th=""> <th0.6< th=""></th0.6<></th0.6<></th0.6<>			<u>6</u>	(152)	231	1.2 (30)			50.4		п	5.12					
 1.5 (40) (4) (5) (7) <li(7)< li=""> <li(7)< li=""> <li(7)< li=""></li(7)<></li(7)<></li(7)<>		(32)	<u>6</u>	(152)	231	1.2 (30)			43.1	2.0		6.20 (40)		26 (660)	2.5 (1.1)	2.5 (1.1)	
2 60 152 231 7 149 10 149 12 149	1.5	(40)	<u>6</u>	(152)	231	1.2	0.6	0.6	38.1	2.0	N	7.44	200	26	3.0	2.5	
2 (50) 8 (20) 231 1.4 0.7 0.6 34.2 2.0 R 12.40 200 2.6 4.0 1.8)			<u>6</u>	(152)	231						D	. ,			. ,		
10 10 254 231 10 10 10 12 305 231 10 10 12 305 231 10 10 12 305 231 10 10 12 305 231 11	2	(50)	8	(203)	231	1.4 (35)			34.2	2.0							
2.5 65 7 (178) 231 1.4 0.7 (15) 2.6 1.6 0 1.6 2.0 1.6 0 1.6 2.0 1.6 </td <td></td> <td></td> <td>10 12</td> <td>(254) (305)</td> <td>231 231</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ĸ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			10 12	(254) (305)	231 231						ĸ						
2.5 8 (20) 231 (23)				. ,							C						
10 (29) 231 (35) (18) (15) -	2.5			. ,		14	0.7	0.6	27.6	20	U	15.66	200	26	45	45	
10 (254) 231	2.5	(65)		(229)		(35)			27.0	2.0	R	(101)	(14.0)	(660)		(2.0)	
3 6 (152) 231 1.4 0.7 0.6 15 2.0 N 19.38 200 26 5.5 5.5 5.5 3 (80) 9 (229) 231 1.4 0.7 (18) 1.5 2.0 N 1 19.38 200 26 5.5 5.5 5.5 10 (254) 231 1.4 0.7 (18) 1.5 2.0 N 1 19.38 200 26 5.5 5.5 5.5 12 (305) 231 - <td></td> <td></td> <td></td> <td>. ,</td> <td></td>				. ,													
3 7 (178) 231 1.4 0.6 5.5 $5.$, ,													
3 (80) 9 (229) 231 (35) (15) (15) (15) (15) (16) (15) (16) ((178)							E						
10 (25) 231 10 10 234 10	3	(80)				1.4 (35)	0.7	0.6	23.0	2.0	Ν	19.38 (125)	200	26 (660)	5.5 (2.5)	5.5 (2.5)	
12 (305) 231 <td></td> <td>т</td> <td></td> <td></td> <td></td> <td>. ,</td> <td></td> <td></td>											т				. ,		
3.5			12														
3.5 90 8 (203) 221 0.6 0.3 0.56 9.0 2.0 E 23.18 200 26 6.0 (2.7) (2.7) (2.7) (2.7) (2.7) (2.7) (2.7)											т						
3.5 (90) 9 (229) 221 (15) (8) (14) 9.0 2.0 E (150) (14.0) (660) (2.7) (2.7) 10 (254) 221 -			-	. ,		0.0	0.0	0.50	0.0	0.0	I	00 10	000	00	<u> </u>	<u> </u>	
4 12 (305) 221 -<	3.5	(90)					(8)		9.0	2.0	E						
4 100) 6 (152) 231				. ,							S						
4 (100) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$. ,							т						
4 (100) 8 (203) 231 1.4 0.7 0.6 18.8 2.0 N 27.90 200 26 8.0 8.0 8.0 10 (254) 231 (35) (18) 0.7 (18) 0.6 15.8 2.0 N 27.90 200 26 8.0 (3.6) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
9 (229) 231 (35) (18) (15) 10 (254) 231 (18) (15)	Α	(100)				11	0.7	0.6	18.8	20	I	27 00	200	26	8.0	8.0	
		(100)				(35)		(15)	10.0	2.0	Ν		(14.0)			(3.6)	
				. ,							G						

Series 231

Та	ble 2	2: Si	izes •	Move	ments	• For	ces •	Weigh	its						See	Notes F	age 7
						2	31 / 221 M From N	ovement C eutral Pos			Spring Rate Capability Based on Movement at Zero Pressure Cond			iting ⁴ itions		Weights ⁵ Ibs / (kgs)	
EXPANSION	JOINT SIZE Nom. I.D. x	Inch / (mm)	NEUTRAL	LENGIN Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs per "rated Compression Force lbs per "rated Extension Force lbs per "rated Lateral Deflection Force (t-bbs per 1° rated Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
			<u>6</u> -	(152)	231												
			7	(178)	231												
5	(125)	8 9	(203) (229)	231 231	1.4 (35)	0.7 (18)	0.6 (15)	15.2	2.0	U	38.13 (246)	190 (13.0)	26 (660)	9.0 (4.1)	8.5 (3.9)	4.0 (1.8)
			10	(223)	231												
			12	(305)	231						N						
			<u>6</u>	(152)	231						D						
			7	(178)	231						Е						
6		150)	8	(203)	231	1.4	0.7	0.6	12.8	2.0	R	49.91	190	26	11.0	9.5	4.0
Ĩ		100)	9	(229)	231	(35)	(18)	(15)			K	(322)	(13.0)	(660)	(5.0)	(4.3)	(1.8)
			10	(254)	231												
			12	(305)	231												
			<u>6</u> 7	(152)	231 231						С						
			8	(178) (203)	231												
8	c	200)	9	(203)	231	1.4	0.7	0.6	9.7	2.0	U	77.97	190	26	15.0	14.5	8.0
		200)	10	(254)	231	(35)	(18)	(15)			R	(503)	(13.0)	(660)	(6.8)	(6.6)	(3.6)
			12	(305)	231						R						
			14	(356)	231						Е						
1(250)	6	(152)	221	0.7	0.4	0.5	4.1	2.0		116.97	190	26	23.0	17.0	10.0
		230)	7	(178)	221	(18)	(10)	(13)			N	(755)	(13.0)	(660)	(10.4)	(7.7)	(4.5)
			<u>8</u>	(203)	231						т						
10		050	9 10	(229)	231 231	1.6	0.8	0.8	9.1	2.0		119.97	190	26	23.0	17.0	10.0
	(250)	12	(254) (305)	231	(40)	(20)	0.8 (20)	5.1	2.0		(774)	(13.0)	(660)	23.0 (10.4)	(7.7)	(4.5)
			14	(305)	231												
			6	(152)	221	0.7	0.4	0.5	3.4	2.0	т	157.74	190	26	26.5	24 5	10.0
1:	2 (;	300)	7	(178)	221	(17)	(10)	0.5 (13)	0.1	2.0	E	(1018)	(13.0)	(660)	26.5 (12.0)	24.5 (11.0)	(4.5)
			<u>8</u>	(203)	231						S						
			9	(229)	231					e -	т					a · -	
1:	2 (300)	10	(254)	231	1.6 (40)	0.8 (20)	0.8 (20)	7.6	2.0		161.18 (1045)	190 (13.0)	26 (660)	34.0 (15.4)	24.5 (11.0)	10.0 (4.5)
			12	(305)	231						I						
			14 •	(356)	231 231						N						
			<u>8</u> 9	(203) (229)	231						G						
14	4 ((350)	7 10	(229)	231	1.6	0.8	0.8	6.5	2.0		210.18	130	26	40.0	27.0	12.0
	(,	12	(305)	231	(40)	(20)	(20)				(1356)	(9.0)	(660)	(18.1)	(12.3)	(5.4)
			14	(356)	231												
01	21	Y	FA	R	C	all 1	Coll	Fre	e:	1-	866-711-4	467	3	10.000		Sh	
IR PI	ROD	DUC	TS IN								arRubberProdu			V	lor	d V	lide

Series 231

Table	e 2: S	izes •	Move	ments	• For	ces •	Weigh	nts						See	Notes P	age 7
				_w	2	31 / 221 M From N	ovement C leutral Pos			Spring Rate Capability Based or Movement at Zero Pressure Con		Opera Condi			Weights ⁵ Ibs / (kgs)	
EXPANSION JOINT SIZE	Nom. I.D. y Inch / (mm)	NEUTRAL	LENGIN Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated compression Force Ibs Force Ibs Force Ibs per 1" rated per 1" rated Force ft-Ibs Force ft-Ibs Force ft-Ibs Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
16	(400)	<u>8</u> 9 10 12 14	(203) (229) (254) (305) (356)	231 231 231 231 231 231	1.6 (40)	0.8 (20)	0.8 (20)	5.7	2.0	U N	264.74 (1708)	115 (8.0)	26 (660)	47.0 (21.3)	33.5 (15.2)	15.0 (6.8)
18	(450)	<u>8</u> 9 10 12 14	(203) (229) (254) (305) (356)	231 231 231 231 231 231	1.6 (40)	0.8 (20)	0.8 (20)	5.1	2.0	D E R	325.50 (2100)	115 (8.0)	26 (660)	56.0 (25.4)	34.0 (15.5)	16.0 (7.2)
20	(500)	<u>8</u> 9 10 12 14	(203) (229) (254) (305) (356)	231 231 231 231 231 231	1.6 (40)	0.8 (20)	0.8 (20)	5.7	2.0	C U	392.62 (2533)	115 (8.0)	26 (660)	67.0 (30.4)	38.0 (17.3)	16.0 (7.2)
22	(550)	8 9	(203) (229)	221 221	0.8 (20)	0.5 (13)	0.5 (13)	2.6	2.0	R R	483.08 (3117)	100 (7.0)	26 (660)	70.0 (31.8)	44.0 (20.0)	19.0 (8.6)
22	(550)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	5.2	2.0	E N	481.12 (3104)	100 (7.0)	26 (660)	70.0 (31.8)	44.0 (20.0)	19.0 (8.6)
24	(600)	8 9	(203) (229)	221 221	0.8 (20)	0.5 (13)	0.5 (13)	2.3	2.0	т	562.82 (3631)	100 (7.0)	26 (660)	79.0 (35.8)	48.0 (21.8)	19.0 (8.6)
24	(600)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	4.8	2.0	т	562.03 (3626)	100 (7.0)	26 (660)	79.0 (35.8)	48.0 (21.8)	20.0 (9.0)
26	(650)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	4.4	2.0	E S T	649.14 (4188)	90 (6.0)	26 (660)	100.0 (45.4)	51.0 (23.1)	20.0 (9.0)
28	(700)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	4.1	2.0	I N	742.45 (4790)	90 (6.0)	26 (660)	102.0 (46.3)	55.0 (25.0)	28.0 (12.6)
30 30	(750) (750)	9 <u>10</u> 12	(229) (254) (305)	221 231 231	0.9 (23) 2.0	0.6 (15)	0.5 (13)	2.2 3.8	2.0 2.0	G	798.58 (5152) 842.27	90 (6.0) 90	26 (660) 26	117.0 (53.1) 117.0	63.0 (28.6) 63.0	29.5 (13.3) 29.5
	YI	14 EA	(356)							866-711- arRubberProdu			(660) V		(28.6) Shi d W	(13.3) i p / i d e

Series 231

Tabl	e 2: S	izes •	Move	ments	• For	ces •	Weigh	nts						See	e Notes F	Page 7
7	×		-	ᠵ╙	2	31 / 221 Ma From N	ovement C eutral Pos			Spring Rate Capability Based or Movement at Zero Pressure Con		Opera Cond	nting ⁴ itions		Weights ⁵ Ibs / (kgs)	
EXPANSIO	Nom. I.D. x Inch / (mm)		LENGIN Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs per 1" rated Compression Force lbs per 1" rated Extension Force lbs per 1" rated Angular Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
32	(800)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.6	2.0		948.29 (6118)	90 (6.0)	26 (660)	120.0 (54.4)	68.0 (30.8)	33.0 (14.9)
34	(850)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.4	2.0	U N	1060.51 (6842)	90 (6.0)	26 (660)	122.0 (55.3)	72.0 (32.7)	43.0 (19.5)
36	(900)	10 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.2	2.0	D E	1179.09 (7607)	90 (6.0)	26 (660)	143.0 (64.9)	76.0 (34.5)	43.0 (19.5)
38	(950)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	3.0	2.0	R	1303.86 (8412)	90 (6.0)	26 (660)	162.0 (73.5)	86.0 (39.0)	43.0 (19.5)
40	(1000)	<u>10</u> 12 14	(254) (305) (356)	231 231 231	2.0 (51)	1.0 (25)	1.0 (25)	2.9	2.0	С	1434.99 (9258)	90 (6.0)	26 (660)	173.0 (78.5)	100.0 (45.5)	43.0 (19.5)
42	(1050)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	3.3	2.0	U R	1628.28 (10505)	80 (5.5)	26 (660)	193.0 (87.5)	100.0 (45.5)	44.0 (20.0)
44	(1100)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	3.1	2.0	R	1774.44 (11448)	80 (5.5)	26 (660)	198.0 (89.8)	104.0 (37.2)	44.0 (20.0)
46	(1150)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	3.0	2.0	EN	1926.81 (12431)	80 (5.5)	26 (660)	205.0 (93.0)	127.0 (57.6)	44.0 (20.0)
48	(1200)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.9	2.0	т	2085.53 (13455)	80 (5.5)	26 (660)	211.0 (95.7)	132.0 (59.9)	44.0 (20.0)
50	(1250)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.8	2.0		2250.45 (14519)	80 (5.5)	26 (660)	240.0 (108.8)	134.0 (60.0)	44.0 (20.0)
52	(1300)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.6	2.0	т	2421.72 (15624)	80 (5.5)	26 (660)	256.0 (116.1)	136.0 (61.7)	60.0 (27.0)
54	(1350)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.6	2.0	E	2599.35 (16770)	80 (5.5)	26 (660)	265.0 (120.1)	150.0 (68.0)	63.0 (28.6)
56	(1400)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.5	2.0	S	2931.67 (18914)	80 (5.5)	26 (660)	288.0 (130.6)	165.0 (70.8)	63.0 (28.6)
58	(1450)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.4	2.0	T I	3011.34 (19428)	80 (5.5)	26 (660)	300.0 (136.1)	190.0 (86.2)	66.2 (30.0)
60	(1500)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.3	2.0	N	3208.97 (20703)	80 (5.5)	26 (660)	310.0 (140.6)	200.0 (90.7)	68.3 (31.2)
66	(1650)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.1	2.0	G	3839.51 (24771)	80 (5.5)	26 (660)	350.0 (158.7)	240.0 (108.8)	71.0 (32.2)
68	(1700)	<u>12</u> 14	(305) (356)	231 231	2.4 (61)	1.2 (30)	1.1 (28)	2.0	2.0		4062.24 (28208)	70 (5.0)	26 (660)	368.8 (166.9)	227.0 (103.0)	76.3 (34.6)
	YI	EA	R							866-711- arRubberProdu					Shi I a u	ip /ide

PROCO

Tabl	e 2: S	izes •	Move	ments	• For	ces •	Weigh	ts								Se	e Notes E	Below
7	×		(~"	2	31 / 221 M From N	ovement C leutral Posi				e Capability Ba at Zero Pressu			Opera Condi			Weights ⁵ Ibs / (kgs)	
EXPANSION JOINT SIZE	Nom. I.D. x Inch / (mm)		LENGIA Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch/ (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated Compression Force Ibs per 1" rated Extension	Force lbs per 1" rated Latreral Deflection Force ft-lbs	per 1° rated Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
72	(1800)	<u>12</u>	(305)	231	2.4	1.2	1.1	1.9	2.0	ı	J		4526.62	70	26	390.0	290.0	87.0
12	(1000)	14	(356)	231	(61)	(30)	(28)				N		(29244)	(5.0)	(660)	(176.9)	(131.5)	(39.4)
78	(1050)	12 (305) 231 2.3 1.2 1.0 1.8 2.0 D 14 (356) 231 (57) (30) (25) 1.8 2.0 E 12 (305) 201 (57) (30) (25) 1.8 2.0 E		5410.60	85	26	410.0	315.0	103.0									
10	(1950)			(34907)	(6.0)	(660)	(186.0)	(142.9)	(46.7)									
84	(2100) <u>12</u> 14	<u>12</u>	(305)	231	2.3	1.2	1.0	1.6	2.0		C		6221.13	85	26	440.0	350.0	113.0
04		14	(356)	231	(57)	(30)	(25)				J		(40136)	(6.0)	(660)	(200.0)	(158.0)	(51.3)
90	(2250)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.6	2.0		२		7088.11	85	26	448.0	363.0	125.0
70	(2250)	14	(356)	231	(57)	(30)	(25)				R E		(45730)	(6.0)	(660)	(203.1)	(164.6)	(56.7)
96	(2400)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.4	2.0		N		8011.85	85	26	466.0	367.0	125.0
70	(2400)	14	(356)	231	(57)	(30)	(25)			-	Г		(51689)	(6.0)	(660)	(211.3)	(170.5)	(56.7)
102	(2550)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.3	2.0	-	т		8992.02	85	26	485.8	395.0	137.0
102	(200)	14	(356)	231	(57)	(30)	(25)				E		(58013)	(6.0)	(660)	(220.0)	(179.1)	(62.1)
108	8 (2700)	<u>12</u>	(305)	231	2.3	1.2	1.1	1.2	2.0		S T		10028.75	85	26	510.0	425.0	139.0
	(2700)	14	(356)	231	(57)	(30)	(28)				I		(64702)	(6.0)	(660)	(231.3)	(192.7)	(63.0)
120	(3000)	<u>12</u>	(305)	231	2.3	1.2	1.0	1.1	2.0		N		12271.84	85	26	540.0	565.0	151.0
120	(3000)	14	(356)	231	(57)	(30)	(25)			(G		(79173)	(6.0)	(660)	(244.9)	(256.2)	(65.8)

Neutral lengths underlined are the recommended minimum lengths.

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar NOTES:

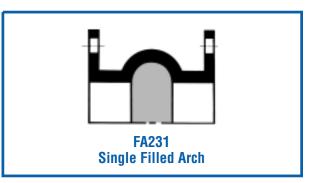
1. The degree of angular movement is based on the maximum rated extension.

2. Torsional movement is expressed when the expansion joint is at its neutral length.

3. To determine "end thrust", multiply thrust factor by operating pressure of system.

4. Pressure rating is based on 170°F operating temperature with a 4:1 safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated or working pressure for 10 minutes is available upon request.

5. Weights are approximate and vary due to OAL.


Series 231

GOODYEAR

 Control rod unit weight consists of one rod with washers, nuts and two control rod plates. Multiply number of control rods needed for application (as specified in the Fluid Sealing Association's Technical Handbook) to determine correct weights.

Filled Arch Rubber Expansion Joints

Known as Style FA231 or Style FA221 the Series FA230 Rubber Expansion Joints are designed to eliminate flow turbulence and collection of solids in the arch core. Filled Arch Rubber Expansion Joints can be found in applications such as sludge, slurries or other heavy solids where material entrapment, high flow velocity or high abrasion conditions exist. Filled arch products are manufactured with seamless tube and are built as an integral part of the carcass. Although the tube is made of a low durometer filler stock, movement ratings of the Style FA231 or Style FA221 are 50% less than those movements listed in the table above. PROCO can manufacture any size listed in the table above.

Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

LIMIT RODS & CONTROL RODS

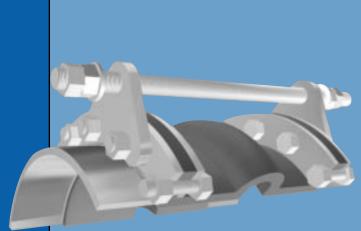


Figure 1: Limit Rod

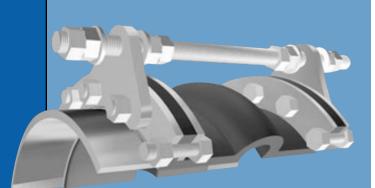


Figure 2: Control Rod

Definition — A control unit assembly is a system of two or more control rod units (limit rods, tie rods or compression sleeves) placed across an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The failure of an anchor or some other piece of equipment in a pipeline can cause excessive motion. The control unit assemblies can be set at the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an additional safety factor and can minimize possible damage to adjacent equipment.

Use of Control Units with Rubber Expansion Joints

Rubber expansion joints must be installed between two fixed anchor points in a piping system. The pipe system must be rigidly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capable of withstanding the line thrusts generated by internal pressure or wide temperature fluctuations. When proper anchoring cannot be provided, CONTROL UNITS ARE REQUIRED.

Listed below are three (3) control unit configurations supplied by PROCO and are commonly used with rubber expansion joints in piping systems.

Figure 1 — Known as a "LIMIT ROD", this control unit configuration will allow an expansion joint to extend to a predetermined extension setting. Nuts shall be field set to no more than the maximum allowable extension movement of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. Consult the systems engineer for proper nut settings prior to system operation.

Figure 2 — Known as a "CONTROL ROD", this control unit configuration is used to allow specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint axial extension) movements. Nuts shall be field set to no more than the maximum allowable extension or compression of a rubber expansion joint. Refer to Tables 2, 3 or 4 in this Manual.

Internal and external nuts can also be field set to allow for no movement in the horizontal plane. This setting will allow the rubber to move laterally while keeping expansion joint thrust forces low on adjacent equipment. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper nut settings prior to system operation.

Figure 3 — Known as a "COMPRESSION SLEEVE", this configuration is used to allow for specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint extension) movements. Nuts shall be field set to no more than the maximum allowable extension of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. PROCO will manufacture each compression sleeve to allow for no axial movement unless otherwise specified by the purchaser. Compression sleeves shall be field trimmed to meet required allowable axial movement as set forth by system requirements. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper sleeve lengths prior to system operation.

Important Control Rod Considerations — The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifying engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition). PROCO engineers its control unit assemblies to system requirements. Our designs incorporate an allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Therefore, it is important to provide pressure and temperature ratings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent mating flange thickness or mating specifications to insure correct rod lengths are provided.

> We Ship World Wide

Series 231

GOODYEAR Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

COMPRESSION SLEEVES

Also available with spherical washer

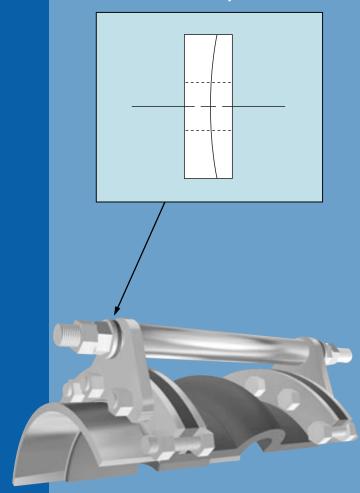
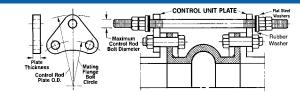
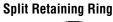



Figure 3: Compression Sleeves

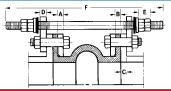
Series 231

Page 9 of 10

Table	e 5: Co	ntrol Unit Pla	ite Deta	il		See Notes	Below
	AL SIZE '(mm)	CONTROL R PLATE O. Inch / (mr	D.	MAXIM Plate Inch / (1	THK	MAXIM ROD DIAI Inch / (METER
1	(25)	8.375	(212.7)	0.625	(15.9)	0.625	(15.9)
1.25	(32)	8.750	(222.3)	0.625	(15.9)	0.625	(15.9)
1.5	(40)	9.125	(231.8)	0.375	(9.5)	0.625	(15.9)
2	(50)	10.125	(257.2)	0.500	(12.7)	0.625	(15.9)
2.5	(65)	11.125	(282.6)	0.500	(12.7)	1.000	(25.4)
3	(80)	11.625	(295.3)	0.500	(12.7)	1.000	(25.4)
3.5	(90)	12.625	(320.7)	0.625	(15.9)	1.000	(25.4)
4	(100)	13.125	(333.4)	0.625	(15.9)	1.000	(25.4)
5	(125)	14.125	(358.8)	0.500	(12.7)	1.000	(25.4)
6	(150)	15.125	(384.2)	0.500	(12.7)	1.000	(25.4)
8	(200)	19.125	(485.8)	0.625	(15.9)	1.000	(25.4)
10	(250)	21.625	(549.3)	0.750	(19.1)	1.000	(25.4)
12	(300)	24.625	(625.5)	0.750	(19.1)	1.000	(25.4)
14	(350)	26.625	(676.3)	0.750	(19.1)	1.000	(25.4)
16	(400)	30.125	(765.2)	1.000	(25.4)	1.250	(31.8)
18	(450)	31.625	(803.3)	1.000	(25.4)	1.250	(31.8)
20	(500)	34.125	(866.8)	1.000	(25.4)	1.250	(31.8)
22 24	(550)	36.125	(917.6)	1.000	(25.4)	1.250	(31.8)
24 26	(600)	38.625 40.875	(981.1)	1.000	(25.4)	1.250	(31.8)
20 28	(650)	40.875	(1038.2)	1.000	(25.4)	1.250	(31.8)
28 30	(700)	44.125	(1120.8)	1.250	(31.8)	1.500	(38.1)
30 32	(750)	40.375	(1177.9)	1.500 1.250	(38.1)	1.500 1.500	(38.1)
32 34	(800)	52.375	(1254.1)	1.500	(31.8) (38.1)	1.750	(38.1)
34 36	(850) (900)	52.375	(1330.3) (1387.5)	1.750		1.750	(44.5)
38	(900) (950)	57.375	(1367.3)	1.500	(44.5) (38.1)	1.750	(44.5) (44.5)
40	(1000)	58.375	(1437.3)	1.500	(38.1)	1.500	(38.1)
42	(1000)	61.625	(1462.7)	1.500	(38.1)	1.750	(44.5)
44	(1000)	63.875	(1622.4)	1.500	(38.1)	1.750	(44.5)
46	(1150)	65.875	(1673.2)	1.500	(38.1)	1.750	(44.5)
48	(1200)	68.125	(1730.4)	1.750	(44.5)	1.750	(44.5)
50	(1250)	70.375	(1787.5)	1.500	(38.1)	1.750	(44.5)
52	(1300)	73.625	(1870.1)	1.750	(44.5)	2.000	(50.8)
54	(1350)	75.875	(1927.2)	2.000	(50.8)	2.000	(50.8)
56	(1400)	78.375	(1990.7)	2.000	(50.8)	2.000	(50.8)
58	(1450)	80.625	(2047.9)	2.000	(50.8)	2.000	(50.8)
60	(1500)	82.625	(2098.7)	2.000	(50.8)	2.000	(50.8)
66	(1650)	89.625	(2276.5)	2.000	(50.8)	2.000	(50.8)
68	(1700)	91.875	(2333.6)	2.000	(50.8)	2.000	(50.8)
72	(1800)	96.125	(2441.6)	2.000	(50.8)	2.000	(50.8)
78	(2000)	103.125	(2619.4)	2.000	(50.8)	2.250	(57.2)
84	(2150)	109.875	(2790.8)	2.250	(57.2)	2.250	(57.2)
90	(2300)	117.125	(2975.0)	2.500	(63.5)	2.500	(63.5)
96	(2450)	124.625	(3165.9)	2.750	(69.9)	2.750	(69.9)
102	(2500)	131.375	(3336.5)	2.500	(63.5)	2.750	(69.9)
108	(2750)	138.125	(3508.4)	2.500	(63.5)	2.750	(69.9)
120	(3050)	152.125	(3864.0)	2.500	(63.5)	3.000	(76.2)
132	(3350)	166.625	(4232.2)	2.500	(63.5)	3.250	(82.6)
144	(3650)	180.750	(4591.1)	2.500	(63.5)	3.500	(88.9)


Metric Conversion: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar Number of Control Units is dependent upon pressure and temperature of system. Refer to Fluid Sealing Association's - REJ Division Manual, Appendix C (Sixth Edition) for *minimum* number of control units (per pressure rating) required for a rubber expansion joint when specified. Values listed in this table are maximum values based on PROCO'S engineering data.

WebSales@GoodyearRubberProducts.com


Control rod plate O.D. installed dimension is based on naximum O.D. PROCO would supply (Figures 2 and 3.) GOODYEAR RUBBER PRODUCTS INC. Call Toll Free: 1-866-711-467 We Ship

World Wide

Series 230 Drilling Chart

A - Retaining Ring Thickness

- **B** Rubber Flange Thickness
- **C** Adjacent Mating Flange Thickness
- D Control Unit Plate Thickness
- E Double Nut Thickness is determined by Control Rod Diameter

We Ship

World Wide

F - Control Rod Bolt Length is determined by A through E + OAL¹

Tab	le 6:	Standard Dri	lling for PR	OCO Series 2	230/220	Rubber Ex	kpansion Joints	Thickness	of Mate	erials for PR	OCO Seri	ies 230/220 Rubber	Expansion	Joints
NO	MINAL		125/	150# Flange	Dimensi	ons ²			Materia	al Thicknes	s' for Bol	t Length Requirem	ents	
PIP EXP JOI	E SIZE ANSION NT I.D.	FLANGE Inch / (r		BOLT CIR Inch / (n		NO. Of Holes	SIZE OF HOLES	RETAINING THICKNE Inch / (m	SS	RUBBER F Thickn Inch / (IESS	ADJACENT Mating flange Thickness	MAX. CON ROD P Thicki Inch / (LATE Ness
1	(25)	4.25	(107.95)	3.13 ((79.50)	4	0.625 (15.9)	0.375	(9.53)	0.472			0.625	(15.9)
1.25	(32)	4.63	(117.60)	3.50 ((88.90)	4	0.625 (15.9)	0.375	(9.53)	0.472	(11.99)		0.625	(15.9)
1.5	(40)	5.00	(127.00)	3.88 ((98.55)	4	0.625 (15.9)	0.375	(9.53)	0.472	(11.99)	С	0.375	(9.5)
2	(50)	6.00	(152.40)	4.75 (*	120.65)	4	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	U	0.500	(12.7)
2.5	(65)	7.00	(177.80)	5.50 (*	139.70)	4	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	S	0.500	(12.7)
3	(80)	7.50	(190.50)	6.00 (152.40)	4	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	Т	0.500	(12.7)
3.5	(90)	8.50	(215.90)	7.00 (*	177.80)	8	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	0	0.625	(15.9)
4	(100)	9.00	(228.60)	7.50 (*	190.50)	8	0.750 (19.1)	0.375	(9.53)	0.472	(11.99)	м	0.625	(15.9)
5	(125)	10.00	(254.00)	8.50 (2	215.90)	8	0.875 (22.2)	0.375	(9.53)	0.551	(14.00)	E	0.500	(12.7)
6	(150)	11.00	(279.40)	9.50 (2	241.30)	8	0.875 (22.2)	0.375	(9.53)	0.551	(14.00)	R	0.500	(12.7)
8	(200)	13.50	(342.90)	11.75 (298.45)	8	0.875 (22.2)	0.375	(9.53)	0.630	(16.00)		0.625	(15.9)
10	(250)	16.00	(406.40)	14.25 (361.95)	12	1.000 (25.4)	0.375	(9.53)	0.630	(16.00)	Т	0.750	(19.1)
12	(300)	19.00	(482.60)	17.00 (4	431.80)	12	1.000 (25.4)		(9.53)	0.748	(19.00)	0	0.750	(19.1)
14	(350)	21.00	(533.40)	18.75 (4	476.25)	12	1.125 (28.6)	0.375	(9.53)	0.866	(22.00)		0.750	(19.1)
16	(400)	23.50	(596.90)	21.25 (539.75)	16	1.125 (28.6)	0.375	(9.53)	0.866	(22.00)	D	1.000	(25.4)
18	(450)	25.00	(635.00)	22.75 (577.85)	16	1.250 (31.8)	0.375	(9.53)	0.866	(22.00)	E	1.000	(25.4)
20	(500)	27.50	(698.50)	25.00 (635.00)	20	1.250 (31.8)	0.375	(9.53)	0.984	(25.00)	т	1.000	(25.4)
22	(550)	29.50	(749.30)	27.25 (692.15)	20	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	E	1.000	(25.4)
24	(600)	32.00	(812.80)	29.50	749.30)	20	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	R	1.000	(25.4)
26	(650)	34.25	(869.95)	31.75 (8	806.45)	24	1.375 (34.9)	0.375	(9.53)	0.984	(25.00)	м	1.000	(25.4)
28	(700)	36.50	(927.10)	34.00 (8	863.60)	28	1.375 (34.9)		(9.53)	0.984	(25.00)	I	1.250	(31.8)
30	(750)	38.75	(984.25)	36.00 (914.40)	28	1.375 (34.9)	0.075	(9.53)	0.984	(25.00)	Ν	1.500	(38.1)
32	(800)	41.75	(1060.45)	38.50 (977.90)	28	1.625 (41.3)		(9.53)	0.984	(25.00)	Е	1.250	(31.8)
34	(850)	43.75	(1111.25)		1028.70)	32	1.625 (41.3)		(9.53)		(25.00)		1.500	(38.1)
36	(900)	46.00	(1168.40)	· `	1085.85)	32	1.625 (41.3)		(9.53)		(25.00)	м	1.750	(44.5)
38	(950)	48.75	(1238.25)	45.25 (1		32	1.625 (41.3)		(9.53)		(25.00)	A	1.500	(38.1)
40	(1000)	50.75	(1289.05)	47.25 (1		36	1.625 (41.3)		(9.53)		(25.00)	Т	1.500	(38.1)
42	(1050)	53.00	(1346.20)	49.50 (1		36	1.625 (41.3)	l	(9.53)		(29.99)	I	1.500	(38.1)
44	(1100)	55.25	(1403.35)	51.75 (1		40	1.625 (41.3)		(9.53)		(29.99)	Ň	1.500	(38.1)
46	(1150)	57.25	(1454.15)	53.75 (1		40	1.625 (41.3)		(9.53)		(29.99)	G	1.500	(38.1)
48	(1200)	59.50		56.00 (1		44	1.625 (41.3)	l	(9.53)		(29.99)	-	1.750	(44.5)
50	(1250)	61.75	(1568.45)	58.25 (1		44	1.875 (47.6)		(9.53)		(29.99)	F	1.500	(38.1)
52	(1300)	64.00	(1625.60)	60.50 (1		44	1.875 (47.6)		(9.53)		(29.99)	Ľ	1.750	(44.5)
54	(1350)	66.25		62.75 (1		44	2.000 (50.8)		(9.53)		(29.99)	Ā	2.000	(50.8)
56	(1400)	68.75		65.00 (1		48	1.875 (47.6)		(9.53)		(29.99)	N	2.000	(50.8)
58	(1450)	71.00		67.25 (1		48	1.875 (47.6)	0.375		1.181		G	2.000	(50.8)
60	(1500)	73.00		69.25 (1		52	2.000 (50.8)	0.375		1.181		E	2.000	(50.8)
66	(1650)	80.00		76.00 (1		52	2.000 (50.8)	0.375		1.181		_	2.000	(50.8)
68	(1700)	82.25		78.25 (1		56	2.000 (50.8)		(9.53)	1.181		т	2.000	(50.8)
72	(1800)	86.50		82.50 (2		60	2.000 (50.8)		(9.53)	1.181		Ĥ	2.000	(50.8)
78	(1950)	93.00		89.00 (2		64	2.125 (53.0)		(9.53)	1.188		1	2.000	(50.8)
84	(2100)	99.75		95.50 (2		64	2.250 (57.2)		(9.53)	1.188		Ċ	2.250	(57.2)
90	(2250)	106.50		102.00 (2		68	2.375 (60.3)		(9.53)	1.188		ĸ	2.500	(63.5)
96	(2400)	113.25		108.50 (2		68	2.500 (63.5)		(9.53)	1.188		N	2.750	(69.9)
102	. ,	120.00		114.50 (2		72	2.625 (66.7)		(9.53)	1.188		E	2.500	(63.5)
108		126.75		120.75 (3		72	2.625 (66.7)	0.375		1.188		S	2.500	(63.5)
120		140.25		132.75 (3		76	2.875 (73.0)		(9.53)	1.188		S	2.500	(63.5)
132		153.75		145.75 (3		80	3.125 (79.4)		(9.53)	1.188		.	2.500	(63.5)
144		167.25				84	3.375 (85.7)		(9.53)	1.188			2.500	(63.5)
							essure: PSIG x .069		(0.00)	1.100	(00.10)		2.000	(00.0)

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar

Series 231

Notes: 1. Control rod length is determined by OAL of rubber expansion joint, rated extension, retaining ring thickness, mating flange thickness and number of nuts. Consult PROCO for rod lengths. roer than AWWA standard

WebSales@GoodyearRubberProducts.com

Series

-

The Expansion Joint People

GOODYEAR RUBBER PRODUCTS INC. Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

We Ship World Wide FROCO series 230/220 spool type wide arch

PROCO Series 230, Styles 231, 232, & 233 Non-Metallic Expansion Joints are designed for tough, demanding industrial applications, as found in: Chemical/Petrochemical Plants, Industrial Process Piping Systems, Marine Services, Power Generation Plants, Pulp/Paper Plants, Steel Mills, Water/Wastewater and Pollution Control Systems. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series 230 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO!

rubber expansion joints

Series 230 Replaces Series 220. The new and improved PROCO Series 230 replaces the PROCO Series 220 rubber expansion joints. (Series 220 products will be available only in short neutral lengths.) This new hand-built product has been completely re-engineered to provide improved strength, flexibility, movement and spring rate capabilities. Manufactured utilizing tire industry technology, the Series 230 combines woven nylon fabric and nylon tire cord into a fabric matrix bonded with elastomer and reinforced with wire to create a product with greater operating performance. The nomenclature for the new PROCO Series 230 is as follows:

Single Arch Series 230, Style 231 Double Arch Series 230, Style 232 Triple Arch Series 230, Style 233

Greater Movements With A Lower/Wider Arch Profile. The movements for the PROCO Series 230 exceed the specification of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a new and improved lower, wider profile arch, more axial compression and axial extension coupled with lateral misalignment, angular and torsional movements can be obtained without increasing the face-to-face requirements. Installation of the Series 230 in a piping system will negate the need for long and expensive multi-arch products. For greater movements based on reengineering and new product construction, specify the PROCO Series 230.

Less Turbulence Or Material Entrapment. The PROCO 230 Series molded integral flange joins the body at a true 90° angle. Our product will install snug against the mating pipe flange without voids. The flange body of the rubber expansion joint is difficult to form and many manufacturers radius the edge angles. The resulting void between the mating flange and the edge angle can create flow turbulence and allow for material entrapment or bacterial growth. You can avoid these problems by specifying PROCO Series 230 rubber expansion joints.

Chemical Or Abrasive Service Capability. Expensive metallic designs for chemical service can be replaced with the more cost-effective PROCO Series 230. Built with low-cost chemical resistant elastomers, such as Chlorobutyl, DuPont Dow Elastomer Hypalon[®] rubber, EPDM, Natural, Neoprene and Nitrile, assures an expansion joint compatible with fluid being pumped or piped (See Table 1). When handling abrasive products such as any solids or slurries, Natural or Neoprene filled arch products should be specified. Please refer to PROCO "Chemical to Elastomer Guide" for recommendations on elastomer chemical compatibility for piping processes. Exclusive Sealing Bead Means A Quick Seal. PROCO has built an "O-Ring" on each flange face of the Series 230. Available only from PROCO, the Series 230 seals faster with less torque at installation. For these exclusive features, specify the PROCO Series 230 rubber expansion joints.

Specifications Met. PROCO has assigned conservative pressure ratings to the Series 230 rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Series C. The pressure ratings for the Series 230 rubber expansion joints have been fully tested and are based on a minimum four-to-one safety factor. For pressure protection with confidence, specify the PROCO Series 230.

Tested Force Pound And Spring Rate Tables. The Series 230 rubber expansion joints are in accordance with and/or lower than the guidelines for spring rate data as listed in the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a lower, wider arch profile, the PROCO Series 230 will provide more flexibility than conventional spool-type rubber expansion joints. In addition, the lower/wider arch profile coupled with a modified radial tire cord construction will result in lower flange forces. Lower resultant forces mean reduced stress of related piping system components. PROCO is currently testing each rubber expansion joint size and will list actual test data as opposed to listing hypothetical data normally associated with spring rate tables.

Absorbs Vibration • Noise • Shock. The PROCO Series 230 quiet-operating rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the molded elastomer expansion joint, not related to piping. Install the Series 230 in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems, specify the PROCO Series 230.

Wide Service Range With Low Cost. Engineered to operate up to 200 PSIG or up to 250°F, the PROCO Series 230 can be specified for a wide range of piping system requirements. Compared to competitive products, you will invest less money when specifying the engineered design and industrial quality of the PROCO Series 230.

Large Inventory Means Same-Day Shipment. We maintain the largest inventory of elastomeric expansion joints in the world. Every size cataloged up to 72" is in stock in a variety of elastomers. We can ship the products you need when you need them! In fact, when it comes to rubber expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

Protecting Piping And Equipment Systems From Stress/Motion

Series 232

0 m 0 0 f 7

We Ship

World Wide

Table 1: A For Specific Ela Recommendation				s • Temper cal To Elas		ıide″	
PROCO Style	e Numbers	Cover ²	Tube	Maximum	Branding	F.S.A.	
Filled Arch (Single) ⁶	Open Arch (Single) ⁶	Elastomer	Elastomer	Operating Temp. °F (°C)	Label Color	Material Class	
FA231/BB	231/BB	Butyl 4	Butyl ⁴	250° (121°)	Black	STD. III	
FA231/EE	231/EE	EPDM	EPDM	250° (121°)	Red	STD. III	
FA231/NH	231/NH	Neoprene	Hypalon ¹	212° (100°)	Green	STD. II	
FA231/NN 5	231/NN 5	Neoprene	Neoprene	225° (107°)	Blue	STD. II	
FA231/NP	231/NP	Neoprene	Nitrile	212° (100°)	Yellow	STD. II	
FA231/NR	231/NR	Neoprene	Natural	180° (68°)	White	STD. I	

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

Hypalon is a registered trademark of DuPont Dow Elastomers.
 Expansion ioint "cover" can be coated with Hypalon® on special order.

3. All products are reinforced with steel and fabric materials.

4 The term "butyl" is synonymous with chlorobutyl (CIIR)

GOODYEAR

double wide arch spool type rubber expansion joints

Series 232

	Tabl	e 3: S	izes •	Move	ments	• For	ces •	Weigh	ts						See	Notes P	age 4
						23		ovement Ca leutral Posi			Spring Rate Capability Based o Movement at Zero Pressure Con			nting ⁴ itions		Weights ⁵ Ibs / (kgs)	
	EXPANSION JOINT SIZE	Nom. I.D. x Inch / (mm)	NEUTRAL	LENGIH Inch / (mm)	EXPANSION JOINT STYLE	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ihs per 1" rated Compression Force Ihs Force Ihs Force Ihs per 1" rated Latreral Deflection Force 1-lhs Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
	1.5	(40)	<u>10</u>	(254)	232	2.4 (61)	1.2 (30)	1.2 (30)	58.0	2.0		7.44 (48)	200 (14.0)	26 (660)	3.0 (1.4)	2.5 (1.1)	2.3 (1.0)
	2	(50)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	53.8	2.0	U	12.40 (80)	200 (14.0)	26 (660)	4.0 (1.8)	4.0 (1.8)	2.8 (1.3)
	2.5	(65)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	47.4	2.0	Ν	15.66 (101)	200 (14.0)	26 (660)	4.5 (2.0)	4.5 (2.0)	2.8 (1.3)
	3	(80)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	42.2	2.0	D	19.36 (125)	200	26 (660)	6.0 (2.7)	5.5 (2.5)	2.8 (1.3)
	4	(100)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	34.2	2.0	E	27.90 (180)	200 (14.0)	26 (660)	8.5 (3.9)	8.0 (3.5)	2.8 (1.3)
	5	(125)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	28.6	2.0	R	38.13 (246)	190 (13.0)	26 (660)	9.5 (4.3)	8.5 (3.9)	4.0 (1.8)
	,	(4.5.5)	<u>10</u>	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	24.4	2.0	N	49.91 (322)	190 (13.0)	26 (660)	11.5 (5.2)	9.5 (4.3)	4.0 (1.8)
	6	(150)	12	(305)	232	2.8 (70)	1.4 (34)	1.2 (30)	24.4	2.0		49.91 (322)	190 (13.0)	26 (660)	11.5 (5.2)	9.5 (4.3)	4.0
	•		10	(254)	232	2.8 (70)	1.4 (34)	1.2 (30)	18.8	2.0	С	77.97 (503)	190 (13.0)	26 (660)	16.0 (7.3)	14.5 (6.6)	8.0 (3.6)
	8	(200)	<u>12</u>	(305)	232	2.8 (70)	1.4 (34)	1.2 (30)	18.8	2.0	U	77.97 (503)	190 (13.0)	26 (660)	16.0 (7.3)	14.5 (6.6)	8.0 (3.6)
	10		12	(305)	222	1.4 (35)	0.8 (20)	1.0 (25)	8.2	2.0	R	116.97 (755)	190 (13.0)	26 (660)	28.3 (12.8)	17.0 (7.7)	10.0 (4.5)
	10	(250)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	17.8	2.0	R	119.97 (774)	190 (13.0)	26 (660)	29.0 (13.2)	17.0 (7.7)	10.0 (4.5)
	10	(222)	12	(305)	222	1.4 (35)	0.8	1.0 (25)	6.8	2.0		157.74 (1018)	190 (13.0)	26 (660)	36.0 (16.3)	24.5 (11.0)	10.0 (4.5)
	12	(300)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	14.9	2.0	E	161.98 (1045)	190 (13.0)	26 (660)	36.0 (16.3)	24.5 (11.0)	10.0 (4.5)
			12	(305)	222	1.4 (35)	0.8 (20)	1.0 (25)	5.8	2.0	Ν	204.61 (1320)	140 (9.5)	26 (660)	44.0 (20.0)	27.0 (12.3)	12.0 (5.4)
	14	(350)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	12.9	2.0	т	210.18 (1356)	130 (9.0)	26 (660)	44.0 (20.0)	27.0 (12.3)	12.0 (5.4)
			16	(406)	232	3.2 (80)	1.6 (40)	1.6 (40)	12.9	2.0		210.18 (1356)	130 (9.0)	26 (660)	44.0 (20.0)	27.0 (12.3)	12.0 (5.4)
			12	(305)	222	1.6 (40)	1.0 (25)	1.0 (25)	7.0	2.0	т	257.54 (1662)	110 (7.5)	26 (660)	53.0 (24.0)	33.5 (15.2)	15.0 (6.8)
	16	(400)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	11.3	2.0		264.74 (1708)	115 (8.0)	26 (660)	53.0 (24.0)	33.5 (15.2)	15.0 (6.8)
			16	(406)	232	3.2 (80)	1.6 (40)	1.6 (40)	11.3	2.0	E	264.74 (1708)	115 (8.0)	26 (660)	53.0 (24.0)	33.5 (15.2)	15.0 (6.8)
			12	(305)	222	1.6 (40)	1.0 (25)	1.0 (25)	6.2	2.0	S	316.59 (2043)	110 (7.5)	26 (660)	61.0 (27.7)	34.0 (15.5)	16.0 (7.2)
	18	(450)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	10.1	2.0	т	325.50 (2100)	115 (8.0)	26 (660)	61.0 (27.7)	34.0 (15.5)	16.0 (7.2)
			16	(406)	232	3.2 (80)	1.6 (40)	1.6 (40)	10.1	2.0	I	325.50 (2100)	115 (8.0)	26 (660)	61.0 (27.7)	34.0 (15.5)	16.0 (7.2)
			12	(305)	222	1.6 (40)	1.0 (25)	1.0 (25)	5.6	2.0	Ν	381.69 (2463)	110 (7.5)	26 (660)	73.0 (33.1)	38.0 (17.3)	16.0 (7.2)
	20	(500)	<u>14</u>	(356)	232	3.2 (80)	1.6 (40)	1.6 (40)	9.1	2.0		392.62 (2533)	115 (8.0)	26 (660)	7 3.0 (33.1)	38.0 (17.3)	16.0 (7.2)
,			16	(406)	232	3.2	1.6	1.6	9.1	2.0	G	392.62	115	26	73.0	38.0	16.0
C	D	Y	EA	R							866-711-		3			Sh	
EF	PRO	DDUC	TS IN	IC.	V	Neb	Sale	s@0	600	dye	arRubberProdu	icts.c	om	V	U UT	IU V	lide

PROCO

Tabl	Table 3: Sizes • Movements • Forces • Weights See Notes Below															
EXPANSION JOINT SIZE Nom. I.D. x Inch / (mm)		NEUTRAL LENGTH Inch / (mm)		– ^щ	232 / 222 Movement Capability: From Neutral Position					Spring Rate Capability Based or Movement at Zero Pressure Con	Operating ⁴ Conditions		Weights ⁵ Ibs / (kgs)			
				EXPANSION Joint Style	Axial Compression Inch/ (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs per 1" rated Compression Force lbs per 1" rated Extension Force lbs per 1" rated per 1" rated Per 10 effection Force ft-lbs Force ft-lbs Force ft-lbs	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
24	(600)	14	(356)	222	1.6 (40)	1.0 (25)	1.0 (25)	4.7	2.0	U	562.82 (3631)	100 (7.0)	26 (660)	88.0 (40.0)	48.0 (21.8)	20.0 (9.1)
24	(000)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	9.5	2.0	N D	562.03 (3626)	100 (7.0)	26 (660)	88.0 (40.0)	48.0 (21.8)	20.0 (9.1)
30	(750)	14	(356)	222	1.9 (48)	1.0 (25)	1.0 (25)	4.3	2.0	E R	798.58 (5152)	90 (6.0)	26 (660)	127.0 (57.6)	63.0 (28.6)	29.5 (13.3)
30	(750)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	7.6	2.0	С	842.27 (5434)	90 (6.0)	26 (660)	127.0 (57.6)	63.0 (28.6)	29.5 (13.3)
34	(850)	14	(356)	222	1.9 (48)	1.0 (25)	1.0 (25)	3.8	2.0	U R	1007.86 (8502)	90 (6.0)	26 (660)	134.0 (60.8)	72.0 (32.7)	43.0 (19.5)
54	(050)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	6.7	2.0	R	1060.51 (6842)	90 (6.0)	26 (660)	134.8 (60.8)	72.0 (32.7)	43.0 (19.5)
36	(000)	14	(356)	222	1.9 (48)	1.0 (25)	1.0 (25)	3.6	2.0	Ν	1217.14 (7852)	90 (6.0)	26 (660)	156.0 (70.8)	76.0 (34.5)	43.0 (19.5)
30	(900)	<u>16</u>	(406)	232	4.0 (102)	2.0 (51)	2.0 (51)	6.3	2.0	т	1179.09 (7607)	90 (6.0)	26 (660)	156.0 (70.8)	76.0 (34.5)	43.0 (19.5)
42	12 (1055)	14	(356)	222	2.2 (56)	1.5 (38)	1.2 (30)	3.1	2.0	E	1673.13 (10775)	80 (5.5)	26 (660)	211.0 (95.7)	100.0 (45.4)	44.0 (20.0)
42	(1050)	<u>16</u>	(406)	232	4.8 (120)	2.4 (61)	2.2 (56)	6.5	2.0	S T	1628.28 (10505)	80 (5.5)	26 (660)	211.0 (95.7)	100.0 (45.4)	44.0 (20.0)
18	48 (1200)	14	(356)	222	2.2 (56)	1.5 (38)	1.2 (30)	2.7	2.0	I N	2134.86 (13773)	80 (5.5)	26 (660)	222.0 (100.7)	132.0 (59.9)	44.0 (20.0)
40		<u>16</u>	(406)	232	4.8 (120)	2.4 (61)	2.2 (56)	5.7	2.0	G	2085.53 (13455)	80 (5.5)	26 (660)	222.8 (101.0)	132.0 (59.9)	44.0 (20.0)

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

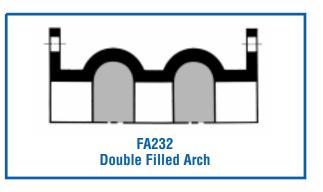
Larger diameters available upon request.

Neutral lengths underlined are the recommended minimum lengths.

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar NOTES:

1. The degree of angular movement is based on the maximum rated extension.

2. Torsional movement is expressed when the expansion joint is at neutral length.

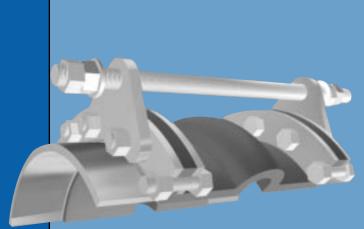

To determine 'end thrust', multiply thrust factor by operating pressure of system.
 Pressure rating is based on 170°F operating temperature with a 4:1 safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated or working pressure for 10 minutes is available upon request.

Weights are approximate and vary due to OAL.

 Control rod unit weight consists of one rod with washers, nuts and two control rod plates. Multiply number of control rods needed for application (as specified in the Fluid Sealing Association's Technical Handbook) to determine correct weights.

Filled Arch Rubber Expansion Joints

Known as Style FA232 or Style FA222 the Series FA230 Rubber Expansion Joints are designed to eliminate flow turbulence and collection of solids in the arch core. Filled Arch Rubber Expansion Joints can be found in applications such as sludge, slurries or other heavy solids where material entrapment, high flow velocity or high abrasion conditions exist. Filled arch products are manufactured with seamless tube and are built as an integral part of the carcass. Although the tube is made of a low durometer filler stock, movement ratings of the Style FA232 or Style FA222 are 50% less than those movements listed in the table above. PROCO can manufacture any size listed in the table above.


Series 232

We Ship World Wide

LIMIT RODS & CONTROL RODS

Figure 1: Limit Rod

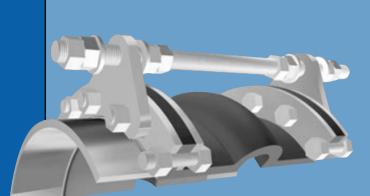


Figure 2: Control Rod

Definition — A control unit assembly is a system of two or more control rod units (limit rods, tie rods or compression sleeves) placed across an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The failure of an anchor or some other piece of equipment in a pipeline can cause excessive motion. The control unit assemblies can be set at the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an additional safety factor and can minimize possible damage to adjacent equipment.

Use of Control Units with Rubber Expansion Joints

Rubber expansion joints must be installed between two fixed anchor points in a piping system. The pipe system must be rigidly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capable of withstanding the line thrusts generated by internal pressure or wide temperature fluctuations. When proper anchoring cannot be provided. CONTROL UNITS ARE REQUIRED.

Listed below are three (3) control unit configurations supplied by PROCO and are commonly used with rubber expansion joints in piping systems.

Figure 1 — Known as a "LIMIT ROD", this control unit configuration will allow an expansion joint to extend to a predetermined extension setting. Nuts shall be field set to no more than the maximum allowable extension movement of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. Consult the systems engineer for proper nut settings prior to system operation.

Figure 2 — Known as a "CONTROL ROD", this control unit configuration is used to allow specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint axial extension) movements. Nuts shall be field set to no more than the maximum allowable extension or compression of a rubber expansion joint. Refer to Tables 2, 3 or 4 in this Manual.

Internal and external nuts can also be field set to allow for no movement in the horizontal plane. This setting will allow the rubber to move laterally while keeping expansion joint thrust forces low on adjacent equipment. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper nut settings prior to system operation.

Figure 3 — Known as a "COMPRESSION SLEEVE", this configuration is used to allow for specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint extension) movements. Nuts shall be field set to no more than the maximum allowable extension of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. PROCO will manufacture each compression sleeve to allow for no axial movement unless otherwise specified by the purchaser. Compression sleeves shall be field trimmed to meet required allowable axial movement as set forth by system requirements. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper sleeve lengths prior to system operation.

Important Control Rod Considerations - The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifying engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition). PROCO engineers its control unit assemblies to system requirements. Our designs incorporate an allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Therefore, it is important to provide pressure and temperature ratings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent mating flange thickness or mating specifications to insure correct rod lengths are provided.

> We Ship World Wide

Series 232

COMPRESSION SLEEVES

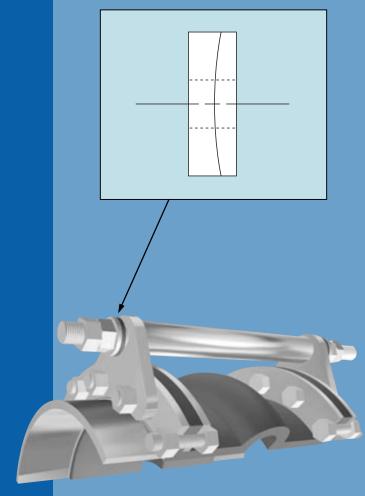
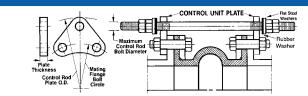
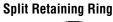



Figure 3: Compression Sleeves

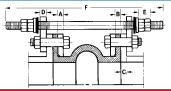
Table 5: Control Unit Plate Detail See Notes Below										
	AL SIZE '(mm)	CONTROL R PLATE O. Inch / (mr	D.	MAXIM Plate Inch / (THK	MAXIMUM ³ ROD DIAMETER Inch / (mm)				
1	(25)	8.375	(212.7)	0.625	(15.9)	0.625	(15.9)			
1.25	(32)	8.750	(222.3)	0.625	(15.9)	0.625	(15.9)			
1.5	(40)	9.125	(231.8)	0.375	(9.5)	0.625	(15.9)			
2	(50)	10.125	(257.2)	0.500	(12.7)	0.625	(15.9)			
2.5	(65)	11.125	(282.6)	0.500	(12.7)	1.000	(25.4)			
3	(80)	11.625	(295.3)	0.500	(12.7)	1.000	(25.4)			
3.5	(90)	12.625	(320.7)	0.625	(15.9)	1.000	(25.4)			
4	(100)	13.125	(333.4)	0.625	(15.9)	1.000	(25.4)			
5	(125)	14.125	(358.8)	0.500	(12.7)	1.000	(25.4)			
6	(150)	15.125	(384.2)	0.500	(12.7)	1.000	(25.4)			
8	(200)	19.125	(485.8)	0.625	(15.9)	1.000	(25.4)			
10	(250)	21.625	(549.3)	0.750	(19.1)	1.000	(25.4)			
12	(300)	24.625	(625.5)	0.750	(19.1)	1.000	(25.4)			
14	(350)	26.625	(676.3)	0.750	(19.1)	1.000	(25.4)			
16	(400)	30.125	(765.2)	1.000	(25.4)	1.250	(31.8)			
18 20	(450)	31.625 34.125	(803.3)	1.000	(25.4)	1.250 1.250	(31.8)			
20	(500)	34.125	(866.8)	1.000	(25.4)		(31.8)			
22 24	(550)	36.125	(917.6)	1.000	(25.4)	1.250	(31.8)			
24	(600)	40.875	(981.1)	1.000 1.000	(25.4)	1.250 1.250	(31.8)			
28	(650)	40.875	(1038.2)	1.250	(25.4)	1.500	(31.8)			
30	(700) (750)	46.375	(1120.8) (1177.9)	1.500	(31.8) (38.1)	1.500	(38.1)			
32	(750)	49.375	(1177.9) (1254.1)	1.250	(30.1) (31.8)	1.500	(38.1) (38.1)			
34	(800)	52.375	(1234.1)	1.500	(38.1)	1.750	(44.5)			
36	(850)	54.625	(1387.5)	1.750	(44.5)	1.750	(44.5)			
38	(950)	57.375	(1367.3)	1.500	(38.1)	1.750	(44.5)			
40	(1000)	58.375	(1437.3)	1.500	(38.1)	1.500	(38.1)			
42	(1050)	61.625	(1462.7)	1.500	(38.1)	1.750	(44.5)			
44	(1100)	63.875	(1622.4)	1.500	(38.1)	1.750	(44.5)			
46	(1150)	65.875	(1673.2)	1.500	(38.1)	1.750	(44.5)			
48	(1200)	68.125	(1730.4)	1.750	(44.5)	1.750	(44.5)			
50	(1250)	70.375	(1787.5)	1.500	(38.1)	1.750	(44.5)			
52	(1300)	73.625	(1870.1)	1.750	(44.5)	2.000	(50.8)			
54	(1350)	75.875	(1927.2)	2.000	(50.8)	2.000	(50.8)			
56	(1400)	78.375	(1990.7)	2.000	(50.8)	2.000	(50.8)			
58	(1450)	80.625	(2047.9)	2.000	(50.8)	2.000	(50.8)			
60	(1500)	82.625	(2098.7)	2.000	(50.8)	2.000	(50.8)			
66	(1650)	89.625	(2276.5)	2.000	(50.8)	2.000	(50.8)			
68	(1700)	91.875	(2333.6)	2.000	(50.8)	2.000	(50.8)			
72	(1800)	96.125	(2441.6)	2.000	(50.8)	2.000	(50.8)			
78	(2000)	103.125	(2619.4)	2.000	(50.8)	2.250	(57.2)			
84	(2150)	109.875	(2790.8)	2.250	(57.2)	2.250	(57.2)			
90	(2300)	117.125	(2975.0)	2.500	(63.5)	2.500	(63.5)			
96	(2450)	124.625	(3165.9)	2.750	(69.9)	2.750	(69.9)			
102	(2500)	131.375	(3336.5)	2.500	(63.5)	2.750	(69.9)			
108	(2750)	138.125	(3508.4)	2.500	(63.5)	2.750	(69.9)			
120	(3050)	152.125	(3864.0)	2.500	(63.5)	3.000	(76.2)			
132	(3350)	166.625	(4232.2)	2.500	(63.5)	3.250	(82.6)			
144	(3650)	180.750	(4591.1)	2.500	(63.5)	3.500	(88.9)			

Metric Conversion: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar Number of Control Units is dependent upon pressure and temperature of system. Refer to Fluid Sealing Association's - REJ Division Manual, Appendix C (Sixth Edition) for *minimum* number of control units (per Pressure rating) required for a rubber expansion joint when specified. Values listed in this table are maximum values based on PROCO'S engineering data.

We Ship


World Wide

Series 232



WebSales@GoodyearRubberProdu com

Series 230 Drilling Chart

A - Retaining Ring Thickness

- **B** Rubber Flange Thickness
- **C** Adjacent Mating Flange Thickness
- D Control Unit Plate Thickness
- E Double Nut Thickness is determined by Control Rod Diameter
- F Control Rod Bolt Length is determined by A through E + OAL¹

Table 6:		Standard Dri	lling for PR	OCO Series	s 230/220	Rubber Ex	kpansion Joints	Thickness of Materials for PROCO Series 230/220 Rubber Expansion Joints					
NOMINAL PIPE SIZE EXPANSION JOINT I.D. Inch / (mm)			125/	150# Flang	e Dimensi	ons ²		Material Thickness' for Bolt Length Requirements					
		FLANGE O.D. Inch / (mm)		BOLT CIRCLE Inch / (mm)		NO. Of Holes	SIZE OF HOLES	RETAINING RIN THICKNESS Inch / (mm)	IG RUBBER FL THICKNE Inch / (m	SS	ADJACENT Mating Flange Thickness	MAX. CONTROL ³ ROD PLATE THICKNESS Inch / (mm)	
1	(25)	4.25	(107.95)	3.13	(79.50)	4	0.625 (15.9)	0.375 (9.5				0.625	(15.9)
1.25	(32)	4.63	(117.60)	3.50	(88.90)	4	0.625 (15.9)	0.375 (9.5	· · · ·			0.625	(15.9)
1.5	(40)	5.00	(127.00)	3.88	(98.55)	4	0.625 (15.9)	0.375 (9.5	53) 0.472 (1	11.99)	С	0.375	(9.5)
2	(50)	6.00	(152.40)	4.75	(120.65)	4	0.750 (19.1)	0.375 (9.5			U	0.500	(12.7)
2.5	(65)	7.00	(177.80)	5.50	(139.70)	4	0.750 (19.1)	0.375 (9.5	· · · ·		S	0.500	(12.7)
3	(80)	7.50	(190.50)	6.00	(152.40)	4	0.750 (19.1)	0.375 (9.5	· · · ·		Т	0.500	(12.7)
3.5	(90)	8.50	(215.90)	7.00	(177.80)	8	0.750 (19.1)	0.375 (9.5			0	0.625	(15.9)
4	(100)	9.00	(228.60)	7.50	(190.50)	8	0.750 (19.1)	0.375 (9.5	· · · ·	11.99)	м	0.625	(15.9)
5	(125)	10.00	(254.00)	8.50	(215.90)	8	0.875 (22.2)	0.375 (9.5	53) 0.551 (1	14.00)	E	0.500	(12.7)
6	(150)	11.00	(279.40)	9.50	(241.30)	8	0.875 (22.2)	0.375 (9.5	· · · ·	14.00)	R	0.500	(12.7)
8	(200)	13.50	(342.90)	11.75	(298.45)	8	0.875 (22.2)	0.375 (9.5		16.00)		0.625	(15.9)
10	(250)	16.00	(406.40)	14.25	(361.95)	12	1.000 (25.4)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,	16.00)	Т	0.750	(19.1)
12	(300)	19.00	(482.60)	17.00	(431.80)	12	1.000 (25.4)	0.375 (9.5	· · · ·	19.00)	0	0.750	(19.1)
14	(350)	21.00	(533.40)	18.75	(476.25)	12	1.125 (28.6)	0.375 (9.5	· · · ·	22.00)	_	0.750	(19.1)
16	(400)	23.50	(596.90)	21.25	(539.75)	16	1.125 (28.6)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,	22.00)	D	1.000	(25.4)
18	(450)	25.00	(635.00)	22.75	(577.85)	16	1.250 (31.8)	0.375 (9.5	, , ,	22.00)	E	1.000	(25.4)
20	(500)	27.50	(698.50)	25.00	(635.00)	20	1.250 (31.8)	0.375 (9.5	· · · ·	25.00)	Ţ	1.000	(25.4)
22	(550)	29.50	(749.30)	27.25	(692.15)	20	1.375 (34.9)	0.375 (9.5	· · · ·	25.00)	E	1.000	(25.4)
24	(600)	32.00	(812.80)	29.50	(749.30)	20	1.375 (34.9)	0.375 (9.5	· / ·	25.00)	R	1.000	(25.4)
26	(650)	34.25	(869.95)	31.75	(806.45)	24	1.375 (34.9)	0.375 (9.5	, I	25.00)	M	1.000	(25.4)
28	(700)	36.50	(927.10)	34.00	(863.60)	28	1.375 (34.9)	0.375 (9.5		25.00)	I	1.250	(31.8)
30	(750)	38.75	(984.25)	36.00	(914.40)	28	1.375 (34.9)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,	25.00)	N	1.500	(38.1)
32	(800)	41.75	(1060.45)	38.50	(977.90)	28	1.625 (41.3)	0.375 (9.5	· · · ·	25.00)	E	1.250	(31.8)
34	(850)	43.75	(1111.25)		(1028.70)	32	1.625 (41.3)	0.375 (9.5		25.00)		1.500	(38.1)
36	(900)	46.00	(1168.40)		(1085.85)	32	1.625 (41.3)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,		м	1.750	(44.5)
38	(950)	48.75	(1238.25)		(1149.35)	32	1.625 (41.3)	0.375 (9.5		25.00)	A	1.500	(38.1)
40	(1000)	50.75	(1289.05)		(1200.15)	36	1.625 (41.3)	0.375 (9.5	· / ·	25.00)	Т	1.500	(38.1)
42	(1050)	53.00	(1346.20)		(1257.30)	36	1.625 (41.3)	0.375 (9.5	· · ·	29.99)	I	1.500	(38.1)
44	(1100)	55.25	(1403.35)		(1314.45)	40	1.625 (41.3)	0.375 (9.5	· · · ·	29.99)	N	1.500	(38.1)
46 48	(1150)	57.25 59.50	(1454.15)		(1365.25)	40	1.625 (41.3)	0.375 (9.5	· · · ·	29.99)	G	1.500	(38.1)
40 50	(1200)	61.75	(1511.30)		(1422.40)	44	1.625 (41.3)	0.375 (9.5 0.375 (9.5		29.99)	F	1.750 1.500	(44.5)
50	(1250)	64.00	(1568.45)		(1479.55)	44	1.875 (47.6) 1.875 (47.6)		, , , ,	29.99)	FL	1.750	(38.1)
52	(1300)	66.25	(1625.60) (1682.75)		(1536.70) (1593.85)	44	1.875 (47.6) 2.000 (50.8)		, , , ,	29.99) 29.99)	A	2.000	(44.5)
56	(1350)	68.75			(1593.65) (1651.00)	44	1.875 (47.6)	'	, , , , , , , , , , , , , , , , , , , ,	· ·	N	2.000	(50.8)
58	(1400) (1450)		(1746.25) (1803.40)		(1651.00) (1708.15)	40	1.875 (47.6)	0.375 (9.5 0.375 (9.5		29.99)	G	2.000	(50.8) (50.8)
60	(1450)	73.00			(1758.95)	52	2.000 (50.8)	0.375 (9.5			E	2.000	(50.8)
66	(1500)	80.00			(1756.95) (1930.40)	52	2.000 (50.8)	0.375 (9.5			Ľ	2.000	(50.8)
68	(1650)	82.25			(1930.40) (1987.55)	56	2.000 (50.8)	0.375 (9.5			т	2.000	(50.8)
72	(1700)	86.50			(1967.55) (2095.50)	60	2.000 (50.8)	0.375 (9.5			н	2.000	(50.8)
78	(1800)	93.00			(2095.50)	64	2.125 (53.0)	0.375 (9.5			n I	2.000	(50.8)
84	(1950)	99.75			(2200.00)	64	2.125 (53.0)	0.375 (9.5			C	2.250	(50.8)
90	(2250)	106.50		102.00		68	2.375 (60.3)	0.375 (9.5			ĸ	2.500	(63.5)
96	(2200)	113.25		102.00		68	2.570 (60.5)	0.375 (9.5			N	2.750	(69.9)
102	(2400)	120.00		114.50		72	2.625 (66.7)	0.375 (9.5			E	2.500	(63.5)
102	(2330)	126.75		120.75		72	2.625 (66.7)	0.375 (9.5			S	2.500	(63.5)
120	(3000)	140.25		132.75		76	2.875 (73.0)	0.375 (9.5			S	2.500	(63.5)
132	(3300)	153.75		145.75		80	3.125 (79.4)	0.375 (9.5			-	2.500	(63.5)
144	(3600)	167.25		158.25		84	3.375 (85.7)	0.375 (9.5				2.500	(63.5)
	. ,						ressure: PSIG x .069 =					2.000	(00.0)

Series 232

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar

Notes: 1. Control rod length is determined by OAL of rubber expansion joint, rated extension, retaining ring thickness, mating flange thickness and number of nuts. Consult PROCO for rod lengths. 2. Flanne dimensions shown are in accordance with 125/150 pound standards: ANSI B16.1 AWWA C-207 Tables 1 and 2 Class D: AWWA C-207 Tables 3 see Class E. Hole size shown is 1/8* roer than AWWA standard

GOODYEAR

Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com We Ship

World Wide

Series

-

The Expansion Joint People

GOODYEAR RUBBER PRODUCTS INC. Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

We Ship World Wide FROCO series 230/220 spool type wide arch

PROCO Series 230, Styles 231, 232, & 233 Non-Metallic Expansion Joints are designed for tough, demanding industrial applications, as found in: Chemical/Petrochemical Plants, Industrial Process Piping Systems, Marine Services, Power Generation Plants, Pulp/Paper Plants, Steel Mills, Water/Wastewater and Pollution Control Systems. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series 230 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO!

rubber expansion joints

Series 230 Replaces Series 220. The new and improved PROCO Series 230 replaces the PROCO Series 220 rubber expansion joints. (Series 220 products will be available only in short neutral lengths.) This new hand-built product has been completely re-engineered to provide improved strength, flexibility, movement and spring rate capabilities. Manufactured utilizing tire industry technology, the Series 230 combines woven nylon fabric and nylon tire cord into a fabric matrix bonded with elastomer and reinforced with wire to create a product with greater operating performance. The nomenclature for the new PROCO Series 230 is as follows:

Single Arch Series 230, Style 231 Double Arch Series 230, Style 232 Triple Arch Series 230, Style 233

Greater Movements With A Lower/Wider Arch Profile. The movements for the PROCO Series 230 exceed the specification of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a new and improved lower, wider profile arch, more axial compression and axial extension coupled with lateral misalignment, angular and torsional movements can be obtained without increasing the face-to-face requirements. Installation of the Series 230 in a piping system will negate the need for long and expensive multi-arch products. For greater movements based on reengineering and new product construction, specify the PROCO Series 230.

Less Turbulence Or Material Entrapment. The PROCO 230 Series molded integral flange joins the body at a true 90° angle. Our product will install snug against the mating pipe flange without voids. The flange body of the rubber expansion joint is difficult to form and many manufacturers radius the edge angles. The resulting void between the mating flange and the edge angle can create flow turbulence and allow for material entrapment or bacterial growth. You can avoid these problems by specifying PROCO Series 230 rubber expansion joints.

Chemical Or Abrasive Service Capability. Expensive metallic designs for chemical service can be replaced with the more cost-effective PROCO Series 230. Built with low-cost chemical resistant elastomers, such as Chlorobutyl, DuPont Dow Elastomer Hypalon[®] rubber, EPDM, Natural, Neoprene and Nitrile, assures an expansion joint compatible with fluid being pumped or piped (See Table 1). When handling abrasive products such as any solids or slurries, Natural or Neoprene filled arch products should be specified. Please refer to PROCO "Chemical to Elastomer Guide" for recommendations on elastomer chemical compatibility for piping processes. Exclusive Sealing Bead Means A Quick Seal. PROCO has built an "O-Ring" on each flange face of the Series 230. Available only from PROCO, the Series 230 seals faster with less torque at installation. For these exclusive features, specify the PROCO Series 230 rubber expansion joints.

Specifications Met. PROCO has assigned conservative pressure ratings to the Series 230 rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Series C. The pressure ratings for the Series 230 rubber expansion joints have been fully tested and are based on a minimum four-to-one safety factor. For pressure protection with confidence, specify the PROCO Series 230.

Tested Force Pound And Spring Rate Tables. The Series 230 rubber expansion joints are in accordance with and/or lower than the guidelines for spring rate data as listed in the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a lower, wider arch profile, the PROCO Series 230 will provide more flexibility than conventional spool-type rubber expansion joints. In addition, the lower/wider arch profile coupled with a modified radial tire cord construction will result in lower flange forces. Lower resultant forces mean reduced stress of related piping system components. PROCO is currently testing each rubber expansion joint size and will list actual test data as opposed to listing hypothetical data normally associated with spring rate tables.

Absorbs Vibration • Noise • Shock. The PROCO Series 230 quiet-operating rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the molded elastomer expansion joint, not related to piping. Install the Series 230 in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems, specify the PROCO Series 230.

Wide Service Range With Low Cost. Engineered to operate up to 200 PSIG or up to 250°F, the PROCO Series 230 can be specified for a wide range of piping system requirements. Compared to competitive products, you will invest less money when specifying the engineered design and industrial quality of the PROCO Series 230.

Large Inventory Means Same-Day Shipment. We maintain the largest inventory of elastomeric expansion joints in the world. Every size cataloged up to 72" is in stock in a variety of elastomers. We can ship the products you need when you need them! In fact, when it comes to rubber expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

Protecting Piping And Equipment Systems From Stress/Motion

Series 233

0 m 0 0 f 7

We Ship

World Wide

Table 1: A For Specific Ela Recommendation				s • Temper cal To Elas		ıide″	
PROCO Style	e Numbers	Cover ²	Tube	Maximum	Branding	F.S.A.	
Filled Arch (Single) ⁶	Open Arch (Single) ⁶	Elastomer	Elastomer	Operating Temp. °F (°C)	Label Color	Material Class	
FA231/BB	231/BB	Butyl 4	Butyl ⁴	250° (121°)	Black	STD. III	
FA231/EE	231/EE	EPDM	EPDM	250° (121°)	Red	STD. III	
FA231/NH	231/NH	Neoprene	Hypalon ¹	212° (100°)	Green	STD. II	
FA231/NN 5	231/NN 5	Neoprene	Neoprene	225° (107°)	Blue	STD. II	
FA231/NP	231/NP	Neoprene	Nitrile	212° (100°)	Yellow	STD. II	
FA231/NR	231/NR	Neoprene	Natural	180° (68°)	White	STD. I	

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

Hypalon is a registered trademark of DuPont Dow Elastomers.
 Expansion ioint "cover" can be coated with Hypalon® on special order.

3. All products are reinforced with steel and fabric materials.

4 The term "butyl" is synonymous with chlorobutyl (CIIR)

GOODYEAR

triple wide arch spool type rubber expansion joints

	Table	e 4: S	izes •	Move	ments	• For	ces •	Weigh	nts						See	Notes P	age 4
	_	že		_	_ш	2	33 / 223 M From N	ovement C eutral Pos			Spring Rate Capability Based o Movement at Zero Pressure Con		Opera Condi			Weights ⁵ Ibs / (kgs)	
	EXPANSION Joint Size	Nom. I.D.) Inch / (mm)	NEUTRAL	LENGTH Inch / (mm)	EXPANSION JOINT STYLE	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force lbs per 1" rated Compression Force lbs Extension Force lbs per 1" rated Latreral Deflection Force 1-bs Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
	1.5	(40)	12	(305)	223	1.3 (33) 3.5	0.7 (18) 1.8	1.5 ⁽³⁸⁾ 1.9	41.5 67.4	2.0 2.0	U	6.20 (40) 7.44	200 (14.0) 200	26 (660) 26	4.0 (1.8) 4.0	2.5 (1.1) 2.5	6.0 (2.7) 6.0
		. ,	<u>14</u>	(356)	233	(90) (90)	(45) 0.7	(48) 1.5	33.5	2.0	Ν	(48) 7.79	(14.0) 200	(660) 26	(1.8) 5.5	(1.1) 4.0	(2.7) 7.0
	2	(50)	12 <u>14</u>	(305) (356)	223 233	(33) 4.1 (105)	(18) 2.0 (51)	(38) 1.9 (48)	63.9	2.0	D	(50) 12.40 (80)	(14.0) (14.0) (14.0)	(660) 26 (660)	(2.5) 5.5 (2.5)	(1.8) (1.8) (1.8)	(3.2) 7.0 (3.2)
	2.5	(65)	12	(305)	223	1.3 (33)	0.7 (18)	1.5 (38)	27.9	2.0	E	14.73 (95)	200 (14.0)	26 (660)	6.0 (2.7)	4.5 (2.0)	7.0 (3.2)
		. ,	<u>14</u>	(356)	233	4.1 (105)	2.0 (51)	1.9 (48)	58.5	2.0	R	15.66 (101)	200 (14.0)	26 (660)	6.0 (2.7)	4.5 (2.0)	7.0 (3.2)
	3	(80)	12 <u>14</u>	(305) (356)	223 233	1.3 (33) 4.1 (105)	0.7 (18) 2.0 (51)	1.5 (38) 1.9 (48)	23.8 53.4	2.0 2.0		17.52 (113) 19.38 (125)	200 (14.0) 200 (14.0)	26 (660) 26 (660)	7.0 (3.2) 7.0 (3.2)	5.5 (4.3) 5.5 (4.3)	7.3 (3.4) 7.3 (3.4)
			12	(305)	223	1.3 (33)	0.7 (18)	1.5	22.5	2.0	С	26.66 (172)	200 (14.0)	26 (660)	9.0 (4.1)	8.0 (3.6)	8.0 (3.6)
	4	(100)	<u>14</u>	(356)	233	4.1 (105)	2.0 (51)	(38) 1.9 (48)	45.6	2.0	U	27.90 (180)	(14.0) 200 (14.0)	26 (660)	(4.1) 9.0 (4.1)	(3.6) (3.6)	8.0 (3.6)
	5	(105)	12	(305)	223	1.7 (43)	0.8 (20)	1.5 (38)	18.3	2.0	R	36.43 (235)	190 (13.0)	26 (660)	11.0 (5.0)	8.5 (3.9)	8.0 (3.6)
	3	(125)	<u>14</u>	(356)	233	4.1 (105)	2.0 (51)	1.9 (48)	39.2	2.0	R	38.13 (246)	190 (13.0)	26 (660)	11.0 (5.0)	8.5 (3.9)	8.0 (3.6)
			12	(305)	223	1.7 (43)	0.8 (20)	1.5 (38)	15.4	2.0		47.71 (308)	190 (13.0)	26 (660)	13.5 (6.1)	9.5 (4.3)	10.0 (4.5)
	6	(150)	<u>14</u>	(356)	233	4.1 (105)	2.0 (51)	1.9 (48)	34.2	2.0	E	49.91 (322)	190 (13.0)	26 (660)	13.5 (6.1)	9.5 (4.3)	10.0 (4.5)
			16	(406)	233	4.1 (105)	2.0 (51)	1.9 (48)	34.2	2.0	Ν	49.91 (322)	190 (13.0)	26 (660)	13.5 (6.1)	9.5 (4.3)	12.0 (5.4)
			12	(305)	223	2.2 (56)	1.1 (28)	1.5 (38)	15.0	2.0	т	82.28 (530)	190 (13.0)	26 (660)	18.0 (8.2)	14.5 (6.6)	12.0 (5.4)
	8	(200)	<u>14</u>	(356)	233	4.1 (105)	2.0 (51)	1.9 (48)	27.0	2.0		77.97 (503)	190 (13.0)	26 (660)	18.0 (8.2)	14.5 (6.6)	12.0 (5.4)
			16	(406)	233	4.1 (105)	2.0 (51)	1.9 (48)	27.0	2.0	т	77.97 (503)	190 (13.0)	26 (660)	18.0 (8.2)	14.5 (6.6)	12.0 (5.4)
			14	(356)	223	2.2 (56)	1.1 (28)	1.5 (38)	12.1	2.0		116.97 (755)	190 (13.0)	26 (660)	31.0 (14.1)	17.0 (7.7)	15.0 (6.8)
	10	(250)	16	(406)	223	2.2 (56)	1.1 (28)	1.1 (28)	12.1	2.0	E	116.97 (755)	190 (13.0)	26 (660)	31.0 (14.1)	17.0 (7.7)	15.0 (6.8)
			<u>18</u>	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	25.6	2.0	S	119.97 (774)	190 (13.0)	26 (660)	31.0 (14.1)	17.0 (7.7)	16.0 (7.2)
			14	(356)	223	2.2 (56)	1.1 (28)	1.5 (38)	10.1	2.0	т	157.74 (1018)	190 (13.0)	26 (660)	40.0 (18.1)	24.5 (11.0)	16.0 (7.2)
	12	(300)	16	(406)	223	2.2 (56)	1.1 (28)	1.1 (28)	10.1	2.0	I	157.74 (1018)	190 (13.0)	26 (660)	40.0 (18.1)	24.5 (11.0)	16.0 (7.2)
			<u>18</u>	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	5.6	2.0	Ν	161.98 (1045)	190 (13.0)	26 (660)	40.0 (18.1)	24.5 (11.0)	16.0 (7.2)
Series 233	14	(350)	16	(406)	223	2.2 (56)	1.1 (28)	1.5 (38)	9.1	2.0	G	204.61 (1320)	130 (9.0)	26 (660)	48.5 (22.0)	27.0 (12.3)	16.0 (7.2)
Dage 2 of 7		(000)	<u>18</u>	(457)	233	4.7	2.4	2.4	9.1	2.0		210.18	130	26 (660)	48.5		16.0 (7.2)
GOO	D	Y	EA	R							866-711-					Sh	/ide
RUBBER	CPRO	000	12 1	VC.	y V	Veb	Sale	s@0	000	dye	arRubberProdu	icts.c	om		1011	u n	IUC

233/223 continued

Tabl	e 4: S	izes •	Move	ments	• For	ces •	Weigh	its						See	e Notes I	Below
	,		_	_ w	2	33 / 223 M From N	ovement C eutral Pos			Spring Rate Capability Based o Movement at Zero Pressure Cor		Opera Cond	ating ⁴ itions		Weights ⁵ Ibs / (kgs)	
EXPANSION Joint Size	Nom. I.D. x Inch / (mm)	NEUTRAL	LENGIH Inch / (mm)	EXPANSION Joint Style	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Force Ibs per 1" rated Compression Force Ibs Extension Force Ibs per 1" rated Latreral Deflection Force A-lbs Angular Angular	Thrust Factor ³ In2 / (cm2)	Positive PSIG/ (Bar)	Vacuum Inches of Hg/ (mm of Hg)	Expansion Joint Assembly	Retaining Ring Set	Control ⁶ Rod Assembly
14	(350)	20	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	18.9	2.0		210.18 (1356)	130 (9.0)	26 (660)	48.5 (22.0)	27.0 (12.3)	20.0 (9.1)
		16	(406)	223	4.0 (102)	2.0 (51)	2.0 (51)	10.5	2.0	U N	257.54 (1662)	115 (8.0)	26 (660)	55.0 (24.9)	33.5 (15.2)	20.0 (9.1)
16	(400)	<u>18</u>	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	16.7	2.0	D	264.74 (1708)	115 (8.0)	26 (660)	55.0 (24.9)	33.5 (15.2)	20.0 (9.1)
		20	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	16.7	2.0	E R	264.74 (1708)	115 (8.0)	26 (660)	55.0 (24.9)	33.5 (15.2)	20.0 (9.1)
		16	(406)	223	4.0 (102)	2.0 (51)	2.0 (51)	9.3	2.0	C	316.59 (2043)	115 (8.0)	26 (660)	66.0 (29.9)	34.0 (15.5)	21.0 (9.5)
18	(450)	<u>18</u>	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	14.9	2.0	U	325.50 (2100)	115 (8.0)	26 (660)	66.0 (29.9)	34.0 (15.5)	21.0 (9.5)
		20	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	14.9	2.0	R R	325.50 (2100)	115 (8.0)	26 (660)	66.0 (29.9)	34.0 (15.5)	21.0 (9.5)
20	(500)	18	(457)	233	4.7 (120)	2.4 (61)	2.4 (61)	13.5	2.0	E	392.62 (2533)	115 (8.0)	26 (660)	78.0 (35.4)	38.0 (17.3)	21.0 (9.5)
20	(500)	<u>20</u>	(508)	233	4.7 (120)	2.4 (61)	2.4 (61)	13.5	2.0	N T	392.62 (2533)	115 (8.0)	26 (660)	78.0 (35.4)	38.0 (17.3)	21.0 (9.5)
24	(600)	18	(457)	223	4.8 (120)	2.4 (61)	2.2 (55)	14.0	2.0	т	562.82 (3631)	100 (7.0)	26 (660)	91.5 (41.5)	48.0 (21.8)	32.0 (14.5)
24	(טטט)	<u>20</u>	(508)	233	6.0 (150)	3.0 (75)	2.7 (69)	14.0	2.0	E	562.03 (3626)	100 (7.0)	26 (660)	91.5 (41.5)	48.0 (21.8)	32.0 (14.5)
30	(750)	18	(457)	223	4.8 (120)	2.4 (61)	2.2 (55)	11.3	2.0	S T	798.58 (5152)	90 (6.0)	26 (660)	131.0 (59.4)	63.0 (28.6)	32.0 (14.5)
- 30	(750)	<u>20</u>	(508)	233	6.0 (150)	3.0 (75)	2.7 (69)	11.3	2.0	I	842.27 (5434)	90 (6.0)	26 (660)	131.0 (59.4)	63.0 (28.6)	32.0 (14.5)
36	(000)	18	(457)	223	4.8 (120)	2.4 (61)	2.2 (55)	9.5	2.0	N G	1217.14 (7873)	90 (6.0)	26 (660)	157.0 (71.2)	76.0 (34.5)	43.0 (19.5)
- 30	(900)	<u>20</u>	(508)	233	6.0 (150)	3.0 (75)	2.7 (69)	9.5	2.0	-	1179.09 (7607)	90 (6.0)	26 (660)	157.0 (71.2)	76.0 (34.5)	43.0 (19.5)

Larger diameters available upon request.

Neutral lengths underlined are the recommended minimum lengths.

Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar NOTES:

- 1. The degree of angular movement is based on the maximum rated extension.
- 2. Torsional movement is expressed when the expansion joint is at neutral length.

To determine 'end thrust', multiply thrust factor by operating pressure of system.
 Pressure rating is based on 170°F operating temperature with a 4:1 safety factor. At higher temperatures, the

pressure rating is reduced lightly. Hydrostatic testing at 1.5 times rated or working pressure for 10 minutes is available upon request.

5. Weights are approximate and vary due to OAL.

6. Control rod unit weight consists of one rod with washers, nuts and two control rod plates. Multiply number of control rods needed for application (as specified in the Fluid Sealing Association's Technical Handbook) to determine correct weights.

Filled Arch Rubber Expansion Joints

Known as Style FA233 or Style FA223, the Series FA230 Rubber Expansion Joints are designed to eliminate flow turbulence and collection of solids in the arch core. Filled Arch Rubber Expansion Joints can be found in applications such as sludge, slurries or other heavy solids where material entrapment, high flow velocity or high abrasion conditions exist. Filled arch products are manufactured with seamless tube and are built as an integral part of the carcass. Although the tube is made of a low durometer filler stock, movement ratings of the Style FA233 or Style FA223 are 50% less than those

movements listed in the table above. PROCO can manual

FA233 Triple Filled Arch

We Ship

World Wide

Series 233

LIMIT RODS & CONTROL RODS

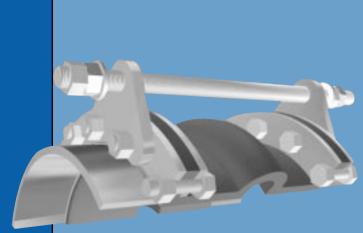


Figure 1: Limit Rod

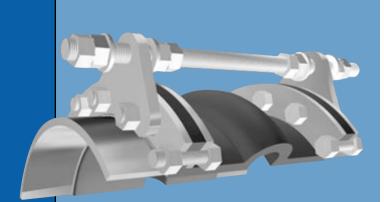


Figure 2: Control Rod

Definition — A control unit assembly is a system of two or more control rod units (limit rods, tie rods or compression sleeves) placed across an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The failure of an anchor or some other piece of equipment in a pipeline can cause excessive motion. The control unit assemblies can be set at the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an additional safety factor and can minimize possible damage to adjacent equipment.

Use of Control Units with Rubber Expansion Joints

Rubber expansion joints must be installed between two fixed anchor points in a piping system. The pipe system must be rigidly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capable of withstanding the line thrusts generated by internal pressure or wide temperature fluctuations. When proper anchoring cannot be provided, CONTROL UNITS ARE REQUIRED.

Listed below are three (3) control unit configurations supplied by PROCO and are commonly used with rubber expansion joints in piping systems.

Figure 1 — Known as a "LIMIT ROD", this control unit configuration will allow an expansion joint to extend to a predetermined extension setting. Nuts shall be field set to no more than the maximum allowable extension movement of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. Consult the systems engineer for proper nut settings prior to system operation.

Figure 2 — Known as a "CONTROL ROD", this control unit configuration is used to allow specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint axial extension) movements. Nuts shall be field set to no more than the maximum allowable extension or compression of a rubber expansion joint. Refer to Tables 2, 3 or 4 in this Manual.

Internal and external nuts can also be field set to allow for no movement in the horizontal plane. This setting will allow the rubber to move laterally while keeping expansion joint thrust forces low on adjacent equipment. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper nut settings prior to system operation.

Figure 3 — Known as a "COMPRESSION SLEEVE", this configuration is used to allow for specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint extension) movements. Nuts shall be field set to no more than the maximum allowable extension of a rubber expansion joint. Refer to Tables 2, 3, or 4 in this manual. PROCO will manufacture each compression sleeve to allow for no axial movement unless otherwise specified by the purchaser. Compression sleeves shall be field trimmed to meet required allowable axial movement as set forth by system requirements. Spherical washers can also be furnished (upon request) to combat any potential "nut to plate" binding during offset. Consult the systems engineer for proper sleeve lengths prior to system operation.

Important Control Rod Considerations — The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifying engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Rubber Expansion Joint Division Technical Handbook (Sixth Edition). PROCO engineers its control unit assemblies to system requirements. Our designs incorporate an allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Therefore, it is important to provide pressure and temperature ratings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent mating flange thickness or mating specifications to insure correct rod lengths are provided.

WebSales@GoodyearRubberProducts.com

We Ship World Wide

Series 233

COMPRESSION SLEEVES

Also available with spherical washer

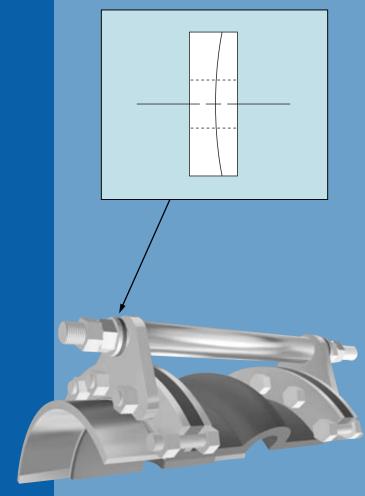
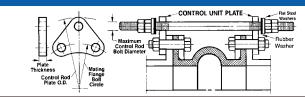
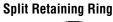
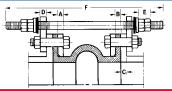



Figure 3: Compression Sleeves

Table	e 5: Co	ntrol Unit Pla	ite Deta	il		See Notes	Below
	AL SIZE ' (mm)	CONTROL R PLATE O. Inch / (mr	D.	MAXIM Plate Inch / (THK	MAXIM ROD DIAI Inch / (1	METER
1	(25)	8.375	(212.7)	0.625	(15.9)	0.625	(15.9)
1.25	(32)	8.750	(222.3)	0.625	(15.9)	0.625	(15.9)
1.5	(40)	9.125	(231.8)	0.375	(9.5)	0.625	(15.9)
2	(50)	10.125	(257.2)	0.500	(12.7)	0.625	(15.9)
2.5	(65)	11.125	(282.6)	0.500	(12.7)	1.000	(25.4)
3	(80)	11.625	(295.3)	0.500	(12.7)	1.000	(25.4)
3.5	(90)	12.625	(320.7)	0.625	(15.9)	1.000	(25.4)
4	(100)	13.125	(333.4)	0.625	(15.9)	1.000	(25.4)
5	(125)	14.125	(358.8)	0.500	(12.7)	1.000	(25.4)
6	(150)	15.125	(384.2)	0.500	(12.7)	1.000	(25.4)
8	(200)	19.125	(485.8)	0.625	(15.9)	1.000	(25.4)
10	(250)	21.625	(549.3)	0.750	(19.1)	1.000	(25.4)
12	(300)	24.625	(625.5)	0.750	(19.1)	1.000	(25.4)
14	(350)	26.625	(676.3)	0.750	(19.1)	1.000	(25.4)
16 18	(400)	30.125	(765.2)	1.000	(25.4)	1.250	(31.8)
20	(450)	31.625 34.125	(803.3)	1.000 1.000	(25.4)	1.250 1.250	(31.8)
20	(500) (550)	36.125	(866.8) (917.6)	1.000	(25.4)	1.250	(31.8)
22	· · /	38.625	· · · ·	1.000	(25.4)	1.250	(31.8)
24	(600) (650)	40.875	(981.1)	1.000	(25.4)	1.250	(31.8)
28	(650)	40.875	(1038.2) (1120.8)	1.250	(25.4)	1.500	(31.8)
30	(700)	46.375	(1120.8) (1177.9)	1.500	(31.8) (38.1)	1.500	(38.1) (38.1)
32	(800)	49.375	(1177.9)	1.250	(30.1)	1.500	(38.1)
34	(800)	52.375	(1234.1)	1.500	(38.1)	1.750	(44.5)
36	(900)	54.625	(1330.3)	1.750	(44.5)	1.750	(44.5)
38	(950)	57.375	(1307.3)	1.500	(38.1)	1.750	(44.5)
40	(1000)	58.375	(1437.3)	1.500	(38.1)	1.500	(38.1)
42	(1050)	61.625	(1565.3)	1.500	(38.1)	1.750	(44.5)
44	(1100)	63.875	(1622.4)	1.500	(38.1)	1.750	(44.5)
46	(1150)	65.875	(1673.2)	1.500	(38.1)	1.750	(44.5)
48	(1200)	68.125	(1730.4)	1.750	(44.5)	1.750	(44.5)
50	(1250)	70.375	(1787.5)	1.500	(38.1)	1.750	(44.5)
52	(1300)	73.625	(1870.1)	1.750	(44.5)	2.000	(50.8)
54	(1350)	75.875	(1927.2)	2.000	(50.8)	2.000	(50.8)
56	(1400)	78.375	(1990.7)	2.000	(50.8)	2.000	(50.8)
58	(1450)	80.625	(2047.9)	2.000	(50.8)	2.000	(50.8)
60	(1500)	82.625	(2098.7)	2.000	(50.8)	2.000	(50.8)
66	(1650)	89.625	(2276.5)	2.000	(50.8)	2.000	(50.8)
68	(1700)	91.875	(2333.6)	2.000	(50.8)	2.000	(50.8)
72	(1800)	96.125	(2441.6)	2.000	(50.8)	2.000	(50.8)
78	(2000)	103.125	(2619.4)	2.000	(50.8)	2.250	(57.2)
84	(2150)	109.875	(2790.8)	2.250	(57.2)	2.250	(57.2)
90	(2300)	117.125	(2975.0)	2.500	(63.5)	2.500	(63.5)
96	(2450)	124.625	(3165.9)	2.750	(69.9)	2.750	(69.9)
102	(2500)	131.375	(3336.5)	2.500	(63.5)	2.750	(69.9)
108	(2750)	138.125	(3508.4)	2.500	(63.5)	2.750	(69.9)
120	(3050)	152.125	(3864.0)	2.500	(63.5)	3.000	(76.2)
132	(3350)	166.625	(4232.2)	2.500	(63.5)	3.250	(82.6)
144	(3650)	180.750	(4591.1)	2.500	(63.5)	3.500	(88.9)

Metric Conversion: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar Number of Control Units is dependent upon pressure and temperature of system. Refer to Fluid Sealing Association's - REJ Division Manual, Appendix C (Sixth Edition) for minimum number of control units (per pressure rating) required for a rubber expansion joint when specified. Values listed in this table are maximum values based on PROCO'S engineering data.


We Ship World Wide


Series 233

WebSales@GoodyearRubberProduct com s.

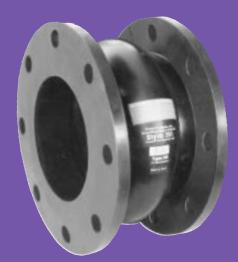
Series 230 Drilling Chart

A - Retaining Ring Thickness

- **B** Rubber Flange Thickness
- **C** Adjacent Mating Flange Thickness
- D Control Unit Plate Thickness
- E Double Nut Thickness is determined by Control Rod Diameter
- F Control Rod Bolt Length is determined by A through E + OAL¹

Tabl	e 6:	Standard Dri	lling for PF	OCO Series	s 230/220	Rubber Ex	kpansion Joints	Thickness of I	Materials for PROCO S	eries 230/220 Rubbe	r Expansior	1 Joints
NOM	IINAL		125/	150# Flang	e Dimensi	ons ²		Ма	terial Thickness' for E	olt Length Requir <u>en</u>	nents	
PIPE Expa Join	SIZE NSION T I.D. (mm)	FLANGE Inch / (n		BOLT C Inch /		NO. Of Holes	SIZE OF HOLES	RETAINING RIN THICKNESS Inch / (mm)	G RUBBER FLANGE THICKNESS Inch / (mm)	ADJACENT MATING FLANGE THICKNESS	MAX. COI ROD P Thicki Inch / (LATE Ness
1	(25)	4.25	(107.95)	3.13	(79.50)	4	0.625 (15.9)	0.375 (9.5			0.625	(15.9)
1.25	(32)	4.63	(117.60)	3.50	(88.90)	4	0.625 (15.9)	0.375 (9.5	3) 0.472 (11.99)		0.625	(15.9)
1.5	(40)	5.00	(127.00)	3.88	(98.55)	4	0.625 (15.9)	0.375 (9.5	3) 0.472 (11.99)	C	0.375	(9.5)
2	(50)	6.00	(152.40)	4.75	(120.65)	4	0.750 (19.1)	0.375 (9.5			0.500	(12.7)
2.5	(65)	7.00	(177.80)	5.50	(139.70)	4	0.750 (19.1)	0.375 (9.5	· · · · · · · · · · · · · · · · · · ·		0.500	(12.7)
3	(80)	7.50	(190.50)	6.00	(152.40)	4	0.750 (19.1)	0.375 (9.5	· · · · · ·	Т	0.500	(12.7)
3.5	(90)	8.50	(215.90)	7.00	(177.80)	8	0.750 (19.1)	0.375 (9.5			0.625	(15.9)
4	(100)	9.00	(228.60)	7.50	(190.50)	8	0.750 (19.1)	0.375 (9.5	· · · · · · · · · · · · · · · · · · ·	м	0.625	(15.9)
5	(125)	10.00	(254.00)	8.50	(215.90)	8	0.875 (22.2)	0.375 (9.5		E	0.500	(12.7)
6	(150)	11.00	(279.40)	9.50	(241.30)	8	0.875 (22.2)	0.375 (9.5	· · · · · · · · · · · · · · · · · · ·	R	0.500	(12.7)
8	(200)	13.50	(342.90)	11.75	(298.45)	8	0.875 (22.2)	0.375 (9.5			0.625	(15.9)
10	(250)	16.00	(406.40)	14.25	(361.95)	12	1.000 (25.4)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,	T	0.750	(19.1)
12	(300)	19.00	(482.60)	17.00	(431.80)	12	1.000 (25.4)	0.375 (9.5	· · · · · ·	0	0.750	(19.1)
14	(350)	21.00	(533.40)	18.75	(476.25)	12	1.125 (28.6)	0.375 (9.5	· · · · · ·	_	0.750	(19.1)
16	(400)	23.50	(596.90)	21.25	(539.75)	16	1.125 (28.6)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,	D	1.000	(25.4)
18	(450)	25.00	(635.00)	22.75	(577.85)	16	1.250 (31.8)	0.375 (9.5	, , ,	E	1.000	(25.4)
20	(500)	27.50	(698.50)	25.00	(635.00)	20	1.250 (31.8)	0.375 (9.5	· · · · · · · · · · · · · · · · · · ·	Ţ	1.000	(25.4)
22	(550)	29.50	(749.30)	27.25	(692.15)	20	1.375 (34.9)	0.375 (9.5	· · · · · · · · · · · · · · · · · · ·	E	1.000	(25.4)
24	(600)	32.00	(812.80)	29.50	(749.30)	20	1.375 (34.9)	0.375 (9.5	, , , , , ,	R	1.000	(25.4)
26	(650)	34.25	(869.95)	31.75	(806.45)	24	1.375 (34.9)	0.375 (9.5	· · · · ·	M	1.000	(25.4)
28	(700)	36.50	(927.10)	34.00	(863.60)	28	1.375 (34.9)	0.375 (9.5		I	1.250	(31.8)
30	(750)	38.75	(984.25)	36.00	(914.40)	28	1.375 (34.9)	0.375 (9.5	, , , , , , , , , , , , , , , , , , , ,	N	1.500	(38.1)
32 34	(800)	41.75 43.75	(1060.45)	38.50	(977.90)	28	1.625 (41.3)	0.375 (9.5	· · · · · ·	E	1.250	(31.8)
34	(850)	46.00	(1111.25)		(1028.70) (1085.85)	32 32	1.625 (41.3) 1.625 (41.3)	0.375 (9.5 0.375 (9.5			1.500 1.750	(38.1)
38	(900)	48.00	(1168.40)		(1085.85) (1149.35)	32	1.625 (41.3) 1.625 (41.3)	0.375 (9.5 0.375 (9.5		M A	1.500	(44.5)
40	(950) (1000)	50.75	(1238.25) (1289.05)		(1149.35)	36	1.625 (41.3)	0.375 (9.5		Ť	1.500	(38.1) (38.1)
40	(1000)	53.00	(1269.05) (1346.20)		(1200.15)	36	1.625 (41.3)	0.375 (9.5		i	1.500	(38.1)
44	(1000)	55.25	(1340.20)		(1237.30)	40	1.625 (41.3)	0.375 (9.5		N	1.500	(38.1)
46	(1150)	57.25	(1403.33)		(1365.25)	40	1.625 (41.3)	0.375 (9.5	· · · · ·	G	1.500	(38.1)
48	(1200)	59.50	(1434.13)		(1303.23)	44	1.625 (41.3)	0.375 (9.5	í ` í	U	1.750	(44.5)
50	(1250)	61.75	(1568.45)		(1479.55)	44	1.875 (47.6)	0.375 (9.5		F	1.500	(38.1)
52	(1300)	64.00	(1625.60)		(1536.70)	44	1.875 (47.6)	0.375 (9.5		L.	1.750	(44.5)
54	(1350)	66.25	(1620.00)		(1593.85)	44	2.000 (50.8)	0.375 (9.5		Ā	2.000	(50.8)
56	(1400)	68.75	. ,		(1651.00)	48	1.875 (47.6)	0.375 (9.5	· · · · · · · · · · · · · · · · · · ·	Ň	2.000	(50.8)
58	(1450)		(1803.40)		(1708.15)	48	1.875 (47.6)	0.375 (9.5			2.000	(50.8)
60	(1500)	73.00			(1758.95)	52	2.000 (50.8)	0.375 (9.5			2.000	(50.8)
66	(1650)	80.00			(1930.40)	52	2.000 (50.8)	0.375 (9.5			2.000	(50.8)
68	(1700)	82.25			(1987.55)	56	2.000 (50.8)	0.375 (9.5			2.000	(50.8)
72	(1800)	86.50			(2095.50)	60	2.000 (50.8)	0.375 (9.5			2.000	(50.8)
78	(1950)	93.00			(2260.60)	64	2.125 (53.0)	0.375 (9.5	3) 1.188 (30.18)	1	2.000	(50.8)
84	(2100)	99.75		95.50	(2425.70)	64	2.250 (57.2)	0.375 (9.5	3) 1.188 (30.18)		2.250	(57.2)
90	(2250)	106.50		102.00		68	2.375 (60.3)	0.375 (9.5	3) 1.188 (30.18)	K	2.500	(63.5)
96	(2400)	113.25		108.50	(2755.90)	68	2.500 (63.5)	0.375 (9.5			2.750	(69.9)
102	(2550)	120.00		114.50		72	2.625 (66.7)	0.375 (9.5			2.500	(63.5)
108	(2700)	126.75		120.75	(3067.05)	72	2.625 (66.7)	0.375 (9.5			2.500	(63.5)
120	(3000)	140.25		132.75		76	2.875 (73.0)	0.375 (9.5			2.500	(63.5)
132	(3300)	153.75		145.75		80	3.125 (79.4)	0.375 (9.5			2.500	(63.5)
144	(3600)	167.25	(4248.15)	158.25	(4019.55)	84	3.375 (85.7)	0.375 (9.5	3) 1.188 (30.18)		2.500	(63.5)
Matria	Comucanalan	Formula: Nominal	ID. in v 25 -	mm. Dimone	ione, in v 2E	1 - mm· Di	essure: PSIG x .069 =	Par	1		•	

Series 233


Metric Conversion Formula: Nominal I.D.: in. x 25 = mm; Dimensions: in. x 25.4 = mm; Pressure: PSIG x .069 = Bar

Notes: 1. Control rod length is determined by OAL of rubber expansion joint, rated extension, retaining ring thickness, mating flange thickness and number of nuts. Consult PROCO for rod lengths. 2. Flanne dimensions shown are in accordance with 125/150 pound standards: ANSI B16.1 AWWA C-207 Tables 1 and 2 Class D: AWWA C-207 Tables 3 see Class E. Hole size shown is 1/8* roer than AWWA standard

Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com We Ship

World Wide

тм

wide-arch expansion joints

SERIES

The PROCO Series 251 Wide-Arch Expansion Joint is interchangeable with and replaces handmade spool-type and spherical expansion joints. Installed between the anchor points of a piping system or next to mechanical equipment such as: Pumps, Chillers, Cooling Towers, Compressors, Blowers, Fans, Absorption Machines, etc.; specify the PROCO Series 251 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up/Surge Forces. The PROCO Series 251 is engineered for tough, demanding, industrial and commercial applications, as found in: Air Conditioning-Heating and Ventilating Systems, Chemical-Petrochemical and Industrial Process Piping Systems, Power Generating Plants, Steel Mills, Marine Services, Pulp/Paper Systems, Water-Wastewater-Sewage and Pollution Control Systems, where metallic joints/hose or old design rubber expansion joints may have been previously used or specified. Our history in the manufacture of expansion joint products dates back to 1930. PROCO Products is a member of the Rubber Expansion Joint Division, Fluid Sealing Association. When you need an engineered rubber solution to a piping system problem, call PROCO.

In the early 1930's, the U.S. Rubber Company invented the spool-type rubber expansion joint. In 1968, the spherical-type rubber expansion joint was introduced by The Metraflex Company. Today, most makers of expansion joints use similar designs for their standard products. Both designs, spherical and spool-type, had certain strengths and weaknesses. Combining the best design features of the sphere/spool-type with sophisticated manufacturing technology; PROCO has developed the Series 251 Wide-Arch Rubber Expansion Joint. Here are some of the many advantages of our Series 251:

• Greater Movements: The Series 251 utilizes the spherical long flowing arch for maximum movements, when compared to the narrow high arch of the spool-type design. Self-flushing, this arch is great for slurries and reduces turbulence; eliminating the need for a "filled arch".

• Easier Sealing: The Series 251 design utilizes the full-faced rubber/fabric flange of the spool-type joint for a quick and sure seal at the flange when compared to the small lip seal of the spherical design.

• Less Weight: The metal flanges of the spherical design are very heavy when compared to the Series 251 with full-faced rubber flanges and retaining rings. Less weight means less freight and ease of installation.

• Looks Familiar: From the outside, the Series 251 looks very much like the spooltype joint your maintenance people have used for years. They are more comfortable with the proven appearance of the spool-type when compared to the spherical-type.

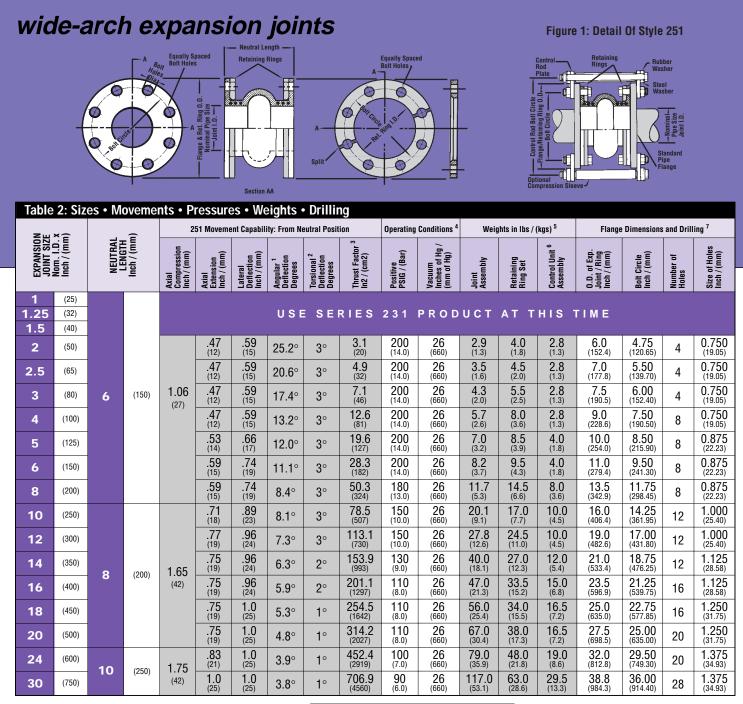
High Pressure With Full Safety Factors. The PROCO Series 251 pressure ratings meet or exceed the requirements of the Rubber Expansion Joint Division, Fluid Sealing Association, for Series A and B. More importantly, our conservative ratings are fully tested and based on a minimum of four-to-one safety factor. With competitive products the safety factor is often calculated, unknown and in one case a published three-to-one. For pressure protection, specify PROCO.

Less Turbulence Or Material Entrapment. The molded integral flange of the Series 251 joins the body at a true 90 degree angle. Our product will install snug against the mating pipe flange without voids. Because this flange/body angle is difficult to form, many competitors severely radius the edge angle. The resulting void can create flow disturbance, allow for material entrapment or bacteria growth. You can avoid these problems by specifying PROCO.

Absorbs Pipe-Wall And Fluid-Borne Noise. The quiet-operating PROCO Series 251 is a replacement for "sound transmitting" metallic expansion joints and hose. Pipe-Wall sound loses energy and is absorbed as the noise carried by the piping both enters and leaves the rubber section. Fluid-Borne noise is absorbed by the volumetric expansion (breathing) of the connector. This action cushions water hammer, and smooths out pumping impulses.

Isolates Vibrations And Motion. Vibration originating from mechanical equipment is absorbed by the PROCO Series 251. Rubber connectors should be installed right after and ahead of the equipment generating the vibration, thus isolating the equipment. As most machinery vibrates in a radial direction from the main shaft, for optimum performance the PROCO connector should be installed horizontally and parallel to this shaft. Vertical and perpendicular installations are acceptable as the PROCO Wide-Arch will accept both axial and lateral movements and vibrations. Installation of the Series 251 in a system enables isolated equipment to move freely on its vibration mountings. Note: For maximum vibration transmission reduction the piping section beyond the rubber connector must be anchored or sufficiently rigid.

Chemical Or Abrasive Service Capability At Minimal Cost. Expensive, exotic metal expansion joints for chemical service can be replaced with the PROCO Series 251. High pressure molded with low-cost chemical resistant elastomers such as: Chlorobutyl, EPDM, Hypalon[®], Neoprene and Nitrile; assures a rubber expansion joint compatible with the fluid being pumped or piped. (See Table 1) Our Neoprene products should be specified when handling abrasive slurries. Use the PROCO "Chemical to Elastomer Guide" to specify an elastomer for your requirement.


Reduces System Stress And Strain/Compensate For Misalignment. Rigid attachment of piping to critical or mechanical equipment can produce excessive loading. Thermal or mechanically created strain-stress-shock are cushioned and absorbed with the installation of a flexible low "force-to-deflect" PROCO Rubber Series 251. The PROCO Wide-Arch Joint adds a flexible component that is automatically self-correcting for misalignment created by structural movements caused by settling, expansion or ground shifts.

Wide Service Range With Low Cost. Engineered to operate up to 200 PSIG and 250°F, the PROCO Series 251 can be specified for a wide range of piping system requirements. Compared to competitive products, you will invest less money when specifying the engineered design, industrial quality PROCO Wide-Arch Expansion Joint.

Large Inventories Mean Same-Day Shipment. We maintain the largest inventory of elastomer expansion joints in the Americas. Every size cataloged item is in stock in several elastomers. We can ship your requirement when you need it. In fact, when it comes to rubber expansion joints, if PROCO doesn't have your requirement ... nobody does!

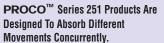
Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

Notes

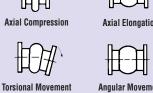
1. The degree of angular movement is based on the maximum rated extension.

2. Torsional movement is expressed when the expansion joint is a neutral length.

- 3. To determine "end thrust", multiply thrust factor by operating pressure of system.
- 4. Pressure rating is based on 170°F operating temperature. At higher temperature the pressure rating is slightly reduced.


5. Weights are approximate.

- 6. Control unit weight consists of one rod, four washers, three nuts and two control rod plates. Multiply number of control units needed for application (as specified in the Fluid Sealing Association Technical Handbook) to determine correct weights.
- 7. Dimensions shown are in accordance with 125/150# standards of ANSI B-16.1.
- B-16.24, B-16.5; AWWA C-207 Table 1 and 2 Class D.


GOODYEAR

NATIONWIDE AND CANADA INTERNATIONAL

DISTRIBUTED BY:

Rotation About The Centerline (Twist)

Lateral Movement Shear Or Perpendicular To Centerline

Axial Elongation Angular Movement Bending Of The Centerline

Absorbing Vibration

Warning: Expansion joints may operate in pipelines or equipment carrying fluids and/or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect personnel in the event of leakage or splash. Note: Piping must be properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and control units are always recommended to prevent damage in the event other anchoring in the system fails. Properties applications shown throughout this data sheet are typical. This information does not constitute a warranty or representation and we assume no legal Call Toll Free: 1-866-711-467

WebSales@GoodyearRubberProduct com

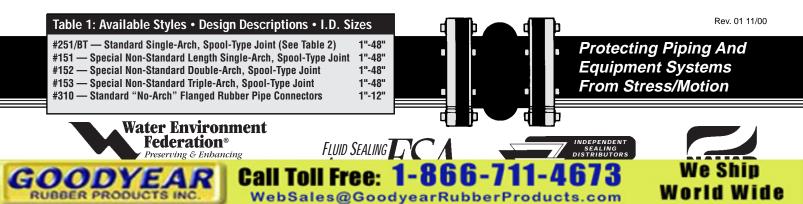
PTFE and FEP lined rubber expansion joints

The PROCO Series 251/BT PTFE and FEP lined expansion joints are designed for tough demanding corrosive chemical applications, as found in: Chemical & Petrochemical Process Facilities and Highly Corrosive Industiral Piping & Pollution Control Systems. The greatest usage of the the Series 251/BT is found in the Pulp and Paper Industry where the ability to resist corrosive attack at elevated temperature and pressure is unmatched by metallic, plastic or other competitive expansion joints. PROCO's Series 251 PTFE or FEP lined expansion joints can easily handle such pulp/paper applications as: White-Green-Black liquor, bleach plant chlorination and caustic extraction stages. Chemically resistant against the entire pH range, PROCO Series 251 PTFE and FEP expansion joints are designed to handle practically every chemical plant application. Installed next to mechanical equipment or between anchor points of a piping system, specify the PROCO 251/BT to: (1) Absorb Pipe Movements/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibrations, (4) Compensate Alignment/ Offset, (5) Eliminate Electrolytic Action and Electrolysis, (6) Protect Against Start-Up/Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO.

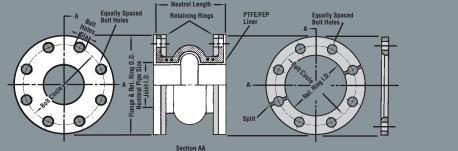
Series 251/BT replaces Series FEP. The new and improved PROCO Series 251/BT will replace the PROCO Series FEP lined rubber expansion joint. (Series FEP products will be available in certain sizes. Contact Proco for information.) This new hand-built product has been completely re-engineered to provide improved strength, flexibility and movement capabilities. Manufactured utilizing tire cord industry technology, the Series 251/BT combines woven polyester fabric and polyester tire cord into a fabric matrix and bonded with a Chlorobutyl elastomer that is reinforced with wire and bonded to a PTFE or FEP liner to create a product with greater operating performance.

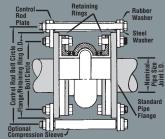
Greater Movements with a Lower/Wider Arch Profile. The movements for the PROCO Series 251/BT exceed the specification of the Fluid Sealing Association's, Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Table V. Due to a new and improved lower, wider profile arch, more axial compression and extension coupled with lateral and angular movements can be obtained without increasing the face-to-face requirements. For greater movements based on re-engineering and new product construction for highly corrosive piping installations, specify the PROCO Series 251/BT PTFE and FEP lined expansion joints.

Chemical Service Capability at Minimal Cost. Expensive, exotic metal expansion joint for low temperature service can be replaced with the PROCO Series 251/BT PTFE and FEP lined expansion joints. Engineered to operate up to 225 PSIG and 250°F, the PROCO Series 251/BT can be specified for a wide range of piping system requirements. Our standard stock is furnished with an exterior Chlorobutyl cover. Other elastomer covers are available on special order. Compared to metal, plastic or other rubber-backed competitive products, you will invest less and have access to in-stock availability with the high quality PROCO Series 251/BT.


Specifications Met. PROCO has assigned conservative pressure ratings to the Series 251/BT and FEP lined rubber expansion joints. The ratings, however, meet the requirements of the Fluid Sealing Association's, Rubber Expansion Joint Division Technical Handbook (Sixth Edition), Series C. The pressure ratings for the Series 251/BT PTFE and FEP lined rubber expansion joints have been fully tested and are based on a minimum fourto-one safety factor. For pressure protection with confidence, specify the PROCO Series 251/BT.

Prevents Electrolysis and Electrolytic Action. In Chemical applications when metallic expansion joints are used, they are generally of a metal dissimilar from the pipeline. This may create an electrolytic galvanic action that could be destructive to the connector equipment or piping system. The use of the rubber-backed PROCO 251/BT PTFE and FEP lined expansion joints prevents this potential hazard. Additionally, our 251/BT expansion joints are non-conductive and eliminate the metal-to-metal contact at the flange face thus stopping electrolysis.


Absorbs Vibration • Noise • Shock. The PROCO Series 251/BT PTFE and FEP lined rubber expansion joints are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through an expansion joint. Water hammer, pumping impulses, water-borne noises and other forms of strain-stress-shock are cushioned and absorbed by the PTFE or FEP lined/rubber elastomer expansion joint, not related to piping. Install the Series 251/BT in a system to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid. For quiet, stress-free systems specify the PROCO Series 251/BT.


Large Inventories Mean Same-Day Shipment. We maintain the largest inventory of expansion joints in the world. Rubber, PTFE or FEP Lined, Plastic or Metal Hose — PROCO can ship the products you need when you need them! In fact, when it comes to expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

PTFE & FEP lined rubber expansion jointsFigure 1: Detail Of Style 251/BT

Table 2: Sizes • Movements • Pressures • Weights • Drilling

					_	_		n Neutral P	osition	Operating (Conditions ⁴	Weigh	ts in Ibs / (kgs) ⁵	Flange	e Dimensions	and Drill	ing ⁷
EXPANSION JOINT SIZE	Nom. I.D. ; Inch / (mm	NEUTRAL	Inch / (mm	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular ¹ Deflection Degrees	Torsional ² Rotation Degrees	Thrust Factor ³ In2 / (cm2)	Positive PSIG / (Bar)	Vacuum Inches of Hg / (mm of Hg)	Joint Assembly	Retaining Ring Set	Control Unit ⁶ Assembly	0.D. of Exp. Joint / Ring Inch / (mm)	Bolt Circle Inch / (mm)	Number of Holes	Size of Holes Inch / (mm)
1 ^{9, 10}	(25)				0.5 (13)	0.7 (17)	35.8°	1 °	0.8 (5)	225 (15.5)	26 (660)	3.0 (1.4)	2.0 (0.8)	2.3 (1.0)	4.3 (108.0)	3.13 (79.5)	4	0.625 (15.88)
1.5°	(40)				0.5 (13)	0.7 (17)	29.9°	1°	1.8 (11)	225 (15.5)	26 (660)	6.0 (2.7)	2.5 (1.1)	2.3 (1.0)	5.0 (127.0)	3.88 (98.6)	4	0.625 (15.88)
2 ⁹	(50)				0.5 (13)	0.7 (17)	25.2°	1°	3.1 (20)	225 (15.5)	26 (660)	7.0 (3.2)	4.0 (1.8)	2.8 (1.3)	6.0 (152.4)	4.75 (120.65)	4	0.750 (19.05)
2.5°	(65)				0.5 (13)	0.7 (17)	20.6°	1°	4.9 (32)	225 (15.5)	26 (660)	7.5 (3.4)	4.5 (2.0)	2.8 (1.3)	7.0 (177.8)	5.50 (139.7)	4	0.750 (19.05)
3	(80)	6	(150)	1.0 (25)	0.5 (13)	0.7 (17)	17.4°	1°	7.1 (46)	225 (15.5)	26 (660)	9.5 (4.3)	5.5 (2.5)	2.8 (1.3)	7.5 (190.5)	6.00 (152.4)	4	0.750 (19.05)
4	(100)				0.5 (13)	0.7 (17)	13.2°	1°	12.6 (81)	225 (15.5)	26 (660)	13.0 (5.9)	8.0 (3.6)	2.8 (1.3)	9.0 (228.6)	7.50 (190.5)	8	0.750 (19.05)
5	(125)				0.5 (13)	0.7 (17)	12.0°	1°	19.6 (127)	225 (15.5)	26 (660)	14.0 (6.4)	8.5 (3.9)	4.0 (1.8)	10.0 (254.0)	8.50 (215.9)	8	0.875 (22.23)
6	(150)				0.5 (13)	0.7 (17)	11.1°	1°	28.3 (182)	225 (15.5)	26 (660)	16.0 (7.3)	9.5 (4.3)	4.0 (1.8)	11.0 (279.4)	9.50 (241.3)	8	0.875 (22.23)
8	(200)				0.7 (17)	1.0 (25)	8.4°	1°	50.3 (324)	225 (15.5)	26 (660)	20.0 (9.1)	14.5 (6.6)	8.0 (3.6)	13.5 (342.9)	11.75 (298.4)	8	0.875 (22.23)
10	(250)				0.7	1.0 (25)	8.1°	1°	78.5 (507)	225 (15.5)	26 (660)	28.0 (12.7)	17.0 (7.7)	10.0 (4.5)	16.0 (406.4)	14.25 (362.0)	12	1.000 (25.40)
12	(300)			1.5	0.7 (17)	1.0 (25)	7.3°	1°	113.1 (730)	225 (15.5)	26 (660)	44.0 (20.0)	24.5 (11.0)	10.0 (4.5)	19.0 (482.6)	17.00 (431.8)	12	1.000 (25.40)
14	(350)	8	(200)	(38)	0.7	1.0 (25)	6.3°	1°	153.9 (993)	150 (10.0)	26 (660)	50.0 (22.7)	27.0 (12.3)	12.0 (5.4)	21.0 (533.4)	18.75 (476.3)	12	1.125 (28.58)
16	(400)	•	(200)		0.7	1.0 (25)	5.9°	1°	201.1 (1297)	150 (10.0)	26 (660)	59.0 (26.8)	33.5 (15.2)	15.0 (6.8)	23.5 (596.9)	21.25 (539.8)	16	1.125 (28.58)
18	(450)				0.7	1.0 (25)	5.3°	1°	254.5 (1642)	150 (10.0)	26 (660)	68.0 (30.8)	34.0 (15.5)	16.5 (7.2)	25.0 (635.0)	22.75 (577.9)	16	1.250 (31.75)
20	(500)				0.7 (17)	1.0 (25)	4.8°	1°	314.2 (2027)	150 (10.0)	26 (660)	79.0 (35.8)	38.0 (17.3)	16.5 (7.2)	27.5 (698.5)	25.00 (635.0)	20	1.250 (31.75)
24	(600)				0.7 (17)	1.0 (25)	3.9°	1°	452.4 (2919)	150 (10.0)	26 (660)	91.0 (41.3)	48.0 (21.8)	20.0 (9.0)	32.0 (812.8)	29.50 (749.3)	20	1.375 (34.93)
30	(750)	10	(250)	1.7 (44)	0.7 (17)	1.0 (25)	3.8°	1°	706.9 (4560)	125 (8.8)	26 (660)	129.0 (58.5)	63.0 (28.6)	29.5 (13.3)	38.8 (984.3)	36.00 (914.4)	28	1.375 (34.93)
36	(900)				0.7 (17)	1.0 (25)	3.1°	1°	1017.9 (6567)	125 (8.8)	26 (660)	160.0 (72.6)	76.0 (34.5)	43.0 (19.5)	46.0 (1168.4)	42.75 (1085.9)	32	1.625 (41.28)
48	(1200)	12	(300)		0.7 (17)	1.0 (25)	2.7°	1°	1809.6 (11675)	100 (7.0)	26 (660)	244.0 (110.7)	132.0 (59.9)	44.0 (20.0)	59.5 (1511.3)	56.00 (1142.4)	44	1.625 (41.28)

Notes:

- 1. The degree of angular movement is based on the maximum rated extension.
- 2. Torsional movement is expressed when the expansion joint is a neutral length.
- 3. To determine "end thrust", multiply thrust factor by operating pressure of system.
- Pressure rating is based on 170°F operating temperature. At higher temperature the pressure rating is slightly reduced.
- 5. Weights are approximate.
- 6. Control unit weight consists of one rod, four washers, three nuts and two control rod plates. Multiply number of control units needed for application (as specified in the Fluid Sealing Association Technical Handbook) to determine correct weights. 7. Dimensions shown are in accordance with 125/150# standards of ANSI B-16.1.
- B-16.24, B-16.5; AWWA C-207 Table 1 and 2 Class D. 8. 1" I.D. through 12" I.D. have white PTFE liners.
- 8. 1" I.D. through 12" I.D. have white PTFE liners. 12" I.D. through 48" I.D. have clear FEP liners.
- 9. Teflon liner extends to bolt holes' center line only.
- 10. Available in filled arch configuration only.

NATIONWIDE AND CANADA

PROCO[™] Series 251 Products Are Designed To Absorb Different Movements Concurrently.

Axial Compression

Angular Movement

Bending Of The Centerline

Call Toll Free: 1-866

Axial Elongation

Torsional Movement Rotation About The Centerline (Twist)

11-467

WebSales@GoodyearRubberProducts.com

DISTRIBUTED BY:

Warning: Expansion joints may operate in pipelines or equipment carrying fluids and/or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect personnel in the event of leakage or splash. Note: Piping must be properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and control units are always recommended to prevent damage in the event other anchoring in the system fails. Properties applications shown throughout this data sheet are typical. This information does not constitute a warranty or representation and we assume no legal responsibility or

We Ship

World Wide

molded wide arch expansion joints

The PROCO Series 261R Wide Arch Expansion Joint expansion joint is specifically designed for use with Plastic or FRP Piping Systems. A replacement for standard spool-type expansion joints, the PROCO 261R has the lowest spring rate offered in the world today. With its low forces to compress, extend or laterally offset, the PROCO Series 261R can be used on plastic or FRP pipes, pumps, valves or tanks without fear of the expansion joint being stronger than the pipe, pump, valve or tank flanges. In addition the PROCO Series 261R is designed for tough demanding corrosive chemical applications, as found in: Chemical & Petrochemical Process Facilities and Highly Corrosive Industrial Piping & Pollution Control Systems. The PROCO Series 261R may be used where metallic hoses/expansion joints or old design rubber expansion joints may have been specified previously. Used on Pumps, Chillers, Cooling Towers, Compressors, Blowers, Fans, Absorption Machines, etc. to: (1) Absorb Pipe Movements/Stress, (2)Reduce System Noise, (3) Isolate Mechanical Vibrations, (4) Compensate Alignment/Offset, (5) Eliminate Electrolytic Action and Electrolysis, (6) Protect Against Start-Up/Surge Forces. Our history in the manufacture of expansion joints dates back to 1930. When you need an engineered rubber expansion joint solution to a piping problem, call PROCO.

PROCO Series 261R Wide Arch Rubber Expansion Joints offer some of the following advantages:

• Low Spring Rates: The Series 261R has the lowest spring rates and forces to deflect of any expansion joint made today.

• Greater Movements: The Series 261R has a wider arch than the conventional narrow arch of the spool-type expansion joint. This arch is twice the standard width of the spool-type arch, thus, eliminating the need for double and triple arch expansion joints.

• Less Weight: The steel flanges of spherical design (Series 240/242) can be very heavy, especially for plastic or fiberglass piping applications. The Series 261R Expansion Joint, including retaining rings, is considerably lighter than the spherical expansion joint design, which lowers shipping and installation costs.

• Easier Sealing: The Series 261R design utilizes the full-faced rubber and fabric flange of the spool-type design making sealing quick and sure when compared with the spherical design.

• Self-Cleaning Wide Arch: The Arch of the Series 261R is wide enough to allow the normal flow of the media to keep the arch clean of particulates. The accumulation of particles in the arch associated with the narrow arch spool-type design is not a consideration with the Wide Arch configuration.

 Looks Familiar: It looks like the familiar design of the spool-type expansion joint. This long proven design adds to the comfort of the Series 261R. **Flange Drilling/Retaining Rings.** All PROCO Series 261R Wide Arch Expansion Joints are drilled in accordance with ANSI 125/150# Standards. They must be installed against a Full-Face Flange with the unique Backing/Retaining Rings that are supplied with the joint. Rings are fabricated from plate steel; plated to prevent corrosion. Rings from materials such as 304 or 316 Stainless Steel are available upon request. Gaskets or packing are not required with the PROCO Series 261R. **Visit our Web site for specific mating flange guidelines.**

High Pressure with Full Safety Factors. The PROCO Series 261R pressure ratings meet or exceed the requirements of the Fluid Sealing Association, Non-Metallic Expansion Joint Division for Series A or C. Sizes 1.5" through 12" include a three-to-one safety factor; sizes 14" through 20" include a four-to-one safety factor.

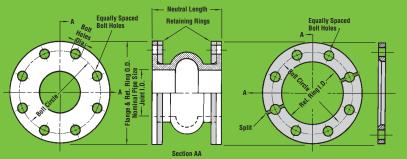
Absorbs Pipe-Wall and Fluid-Borne Noise. The noise transmission problems of metallic expansion joints are eliminated with the Series 261R Expansion Joints. Pipe-Wall sound loses energy and is absorbed as the noise carried by the piping both enters and leaves the rubber section. Fluid-Borne noise is absorbed by the volumetric expansion (breathing) of the expansion joint. This action cushions water hammer and smooths pumping impulses.

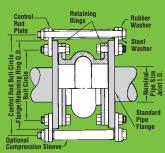
Isolates Vibration and Motion. Vibration originating from mechanical equipment is absorbed by the PROCO Series 261R. To isolate the equipment, rubber connectors should be installed just before and after the equipment generating the vibration. As most machinery vibrates in a radial direction from the main shaft, for optimum performance the PROCO connector should be installed horizontally and parallel to the shaft. Vertical and perpendicular installation of the Series 261R Wide Arch Expansion Joint is permissible as it will accept axial, lateral and rotational movements simultaneously. Installation of the Series 261R in a system allows isolated equipment to move freely on its vibration mountings. Note: For maximum vibration transmission reduction, the piping section beyond the rubber connector must be anchored or rigid.

Large Inventories Mean Same-Day Shipment. We maintain the largest inventory of expansion joints in the world. Rubber, PTFE Lined, Plastic or Metal Hose — PROCO can ship the products you need when you need them! In fact, when it comes to expansion joints, if PROCO doesn't have them in stock ... nobody does!

Information • **Ordering** • **Pricing** • **Delivery.** Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

erProducts.com


world Wide



ebSales@GoodyearRubb

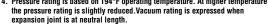
molded wide arch expansion joints

Figure 1: Detail Of Style 261R

Tab	le 2: 3	Sizes	• Mo	oveme	ents •	Spring	Rate	s • P	ressure	s • Wei	ghts • I	Drilling												
				261R	t Movemer	nt Capabilit	ty: From	Neutral I	Position ¹		Spring Rate	S	Operat Condit		Weight	ts in Ibs / (kgs) ⁵	Flange	Dimension	s and D	rilling ⁷			
EXPAI JOINT Nom. Inch /	I.D. X	NEUT LEN(Inch /	GTH	Axial Compression Inch / (mm)	Axial Extension Inch / (mm)	Lateral Deflection Inch / (mm)	Angular Deflection Degrees	Torsional Rotation ² Degrees	Thrust Factor ³ In2 / (cm2)	Force Pounds for 1" Axial Compression Ib/in / (N/mm)	Force Pounds for 1" Axial Extension Ib/in / (N/mm)	Force Pounds for 1" Lateral Deflection Ib/in / (N/mm)	Positive PSIG / (Bar)	Vacuum Inches of Hg / (mm of Hg)	Expansion Joint	Retaining Ring Set	Control Unit ⁶ Assembly	0.D. of Expansion Joint / Ring Inch / (mm)	Bolt Circle Inch / (mm)	Number of Holes	Size of Holes Inch / (mm)			
1.5	(40)				0.625	0.750 (19)	28°	5°	11.04 (71)	126 (22)	182 (32)	149 (26)	225 (15.5)	24 (610)	1.3 (0.59)	2.5 (1.1)	2.3 (1.0)	5.00 (127.0)	3.88 (98.55)	4	0.625 (15.88)			
2	(50)				0.625 (16)	0.750 (19)	25°	5°	14.18 (92)	132 (23)	158 (28)	130 (23)	225 (15.5)	24 (610)	1.7 (0.77)	4.0 (1.8)	2.8 (1.3)	6.00 (152.4)	4.75 (120.65)	4	0.750 (19.05)			
2.5	(65)				0.625 (16)	0.750 (19)	20°	5°	17.71 (114)	128 (22)	141 (25)	111 (19)	225 (15.5)	24 (610)	2.1 (0.95)	4.5 (2.0)	2.8 (1.3)	7.00 (177.8)	5.50 (139.70)	4	0.750 (19.05)			
3	(80)	•	(150)	15	0.625	0.750 (19)	18°	5°	21.64 (140)	139 (24)	208 (36)	133 (23)	225 (15.5)	24 (610)	2.4 (1.0)	5.5 (2.5)	2.8 (1.3)	7.50 (190.5)	6.00 (152.40)	4	0.750 (19.05)			
4	(100)	6	(150)	1.5 (38)	0.625 (16)	0.750 (19)	14°	4°	30.66 (198)	110 (19)	180 (32)	105 (18)	225 (15.5)	24 (610)	3.2 (1.4)	6.0 (2.7)	2.8 (1.3)	9.00 (228.6)	7.50 (190.50)	8	0.750 (19.05)			
5	(125)				0.625 (16)	0.750 (19)	13°	4°	41.26 (266)	143 (25)	190 (33)	136 (24)	225 (15.5)	24 (610)	3.6 (1.6)	8.5 (3.9)	4.0 (1.8)	10.00 (254.0)	8.50 (215.90)	8	0.875 (22.23)			
6	(150)				0.625 (16)	0.750 (19)	12°	4°	53.43 (345)	136 (24)	166 (29)	147 (26)	225 (15.5)	24 (610)	4.9 (2.2)	9.5 (4.3)	4.0 (1.8)	11.00 (279.4)	9.50 (241.30)	8	0.875 (22.23)			
8	(200)				0.625 (16)	0.750 (19)	12°	4°	82.47 (532)	226 (40)	230 (40)	210 (37)	210 (14.8)	24 (610)	7.7 (3.5)	14.5 (6.6)	8.0 (3.6)	13.50 (342.9)	11.75 (298.45)	8	0.875 (22.23)			
10	(250)				0.750 (19)	1.0 (25)	12°	4°	135.13 (872)	248 (43)	381 (67)	281 (49)	210 (14.8)	24 (610)	13.9 (6.3)	17.0 (7.7)	10.0 (4.5)	16.00 (406.4)	14.25 (361.95)	12	1.000 (25.40)			
12	(300)				0.750 (19)	1.0 (25)	11°	4°	179.46 (1158)	378 (66)	493 (86)	409 (72)	210 (14.8)	24 (610)	19.5 (8.8)	24.5 (11.0)	10.0 (4.5)	19.00 (482.6)	17.00 (431.80)	12	1.000 (25.40)			
14	(350)			0.05		0.05	(200) 2.25	0.750 (19)	1.0 (25)	11°	3°	230.08 (1484)	423 (74)	592 (104)	497 (87)	150 (10.3)	24 (610)	22.7 (10.3)	27.0 (12.3)	12.0 (5.4)	21.00 (533.4)	18.75 (476.25)	12	1.125 (28.58)
16	(400)	8	(200) 2	(57)	0.750 (19)	1.0 (25)	10°	3°	286.98 (1852)	432 (76)	606 (106)	509 (89)	150 (10.3)	24 (610)	26.8 (12.2)	33.5 (15.3)	15.0 (6.8)	23.50 (596.9)	21.25 (539.75)	16	1.125 (28.58)			
18	(450)				0.750 (19)	1.0 (25)	8°	3°	350.15 (2259)	543 (95)	761 (133)	690 (121)	150 (10.3)	24 (610)	29.5 (13.4)	34.0 (15.5)	16.0 (7.2)	25.00 (635.0)	22.75 (577.85)	16	1.250 (31.75)			
20	(500)			-	0.750 (19)	1.0 (25)	8°	3°	419.61 (2707)	628 (110)	829 (145)	776 (136)	150 (10.3)	24 (610)	31.8 (17.3)	38.0 (17.3)	16.0 (7.2)	27.50 (698.50)	25.00 (635.00)	20	1.250 (31.75)			

PROCO[™] Series 261R Products Are

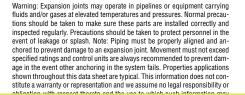
Axial Elongation


Designed To Absorb Different

Movements Concurrently.

Axial Compression

Notes:


- 1. Movements shown are non-concurrent.
- 2. Torsional movement is expressed when the expansion joint is at neutral length.
- To determine "end thrust," multiply thrust factor by operating pressure of system.
 Pressure rating is based on 194°F operating temperature. At higher temperature

- 5. Weights are approximate.
- 6. Control unit weight consists of one rod, four washers, three nuts and two control rod plates. Multiply number of control units needed for application (as specified in the Fluid Sealing Association Technical Handbook) to determine correct weights.
 7. Dimensions shown are in accordance with 125/150# standards of ANSI B-16.1,
- B-16.24, B-16.5; AWWA C-207 Table 1 and 2 Class D.

DISTRIBUTED BY:

We Ship

World Wide

flanged rubber pipe connectors

ТМ

PROCO Series 300 Rubber Pipe is designed for tough demanding industrial and commercial applications as found in: Chemical-Petrochemical and Industrial Process Piping Systems, Power Generating Plants, Steel Mills, Marine Services, Pulp/Paper Systems, Water-Waste/Water-Sewage and Pollution Control Systems. Specific equipment applications could include: Pumps, Cooling Towers, Compressors, Blowers, Fans, Absorption Machines, etc. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series 300 to: (1) Isolate Mechanical Vibration, (2) Reduce System Noise, (3) Absorb Pipe Movement/Stress, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up/Surge Forces. When you need an engineered rubber solution to a piping system problem, call PROCO

Engineered For Your Application. Each PROCO Series 300 Rubber Pipe is constructed with a smooth interior tube specially compounded from an elastomer that satisfies the Chemical-Abrasion-Sound requirements of your application (See Table 2). Multiple plies of tough fabric and helical spring steel wire are embedded into the pipe wall during the manufacturing process to provide a product designed for your pressure and vacuum requirements. Available styles include:

SERIES

Style 310-R: Precision molded to specific lengths as listed in Table 3. The built-in rubber flanges are drilled to ANSI - 125/150#.

Style 310: Manufactured by conventional methods which allow for fabrication to a specific length requirement, in addition to lengths as shown in Table 3. Standard with 125/ 150# drilling, the Style 310 can also be fabricated to meet other drilling patterns

Style 320: Designed for high pressure applications (See Table 4); this connector manufactured similar to Style 310. Flanges are usually drilled to ANSI 250/300# with other drilling patterns furnished on request.

Style BE-310: This beaded-end design features a rotating floating metallic flange for fast perfect bolt hole alignment without torsion in new and old installations. Only available in optimum length sizes as shown in Table 3.

Table 1: Comparison of Material Acoustical Impedances												
Material	Sound Velocity In. / Sec.	Density Lbs./In. ³	Acoustical Impedance Lbs. / In. ² Sec.	Relative Impedance								
Steel	206,500	.283	58,440	551.3								
Copper	140,400	.320	44,930	423.9								
Cast Iron	148,800	.260	38,690	365.0								
Lead	49,800	.411	20,470	193.1								
Glass	216,000	.094	20,300	191.5								
Concrete	198,000	.072	14,260	134.5								
Water	56,400	.036	2,030	19.2								
Pine	132,000	.0145	1,910	18.0								
Cork	19,200	.0086	165	1.6								
Rubber	2,400	.0442	106	1.0								

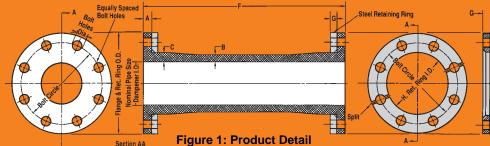
NOTES: Acoustical impedance is defined as the product of material density times velocity of sound in that material. In acoustical systems low impedance corresponds to low sound transmission Relative impedance is based on Rubber = 1.0

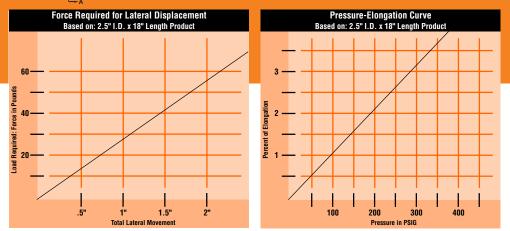
Table 2: Available Styles and Materials													
	r Spec comm			ner See: PR	OCO [™] "Che	mical To Elas	tomer G	uide"					
310	310-R	BE-310	320	PROCO Material Code	Cover Elastomer	Tube Elastomer	Maximum Operating Temp °F	F.S.A. Material Class					
*	*	*	*	BB	Chlorobutyl	Chlorobutyl	250°	Special II					
*			*	BT	Chlorobutyl	Teflon®	250°	Special II					
*		*	*	EE	EPDM	EPDM	250°	Special II					
*			*	NG	Neoprene	Gum	180°	Std. I					
*	*	*	*	NH	Neoprene	Hypalon®	212°	Std. II					
*	*	*	*	NN	Neoprene	Neoprene	225°	Std. II					
*	*	*	*	NP	Neoprene	Nitrile	212°	Std. II					

Absorbs Pipe-Wall and Fluid-Borne Noise. The PROCO quiet-operating Series 300 is a replacement for "sound transmitting" metallic connectors. Compare the Acoustical Impedance ratings of rubber and other materials, as shown in Table 1. Pipe-Wall sound is absorbed as the noise carried by the piping both enters and leaves the rubber section. Connector length further influences absorption as sound loses energy traveling axially through the rubber. For optimum lengths, see Table 3. Fluid-borne noise is absorbed by the volumetric expansion (breathing) of the connector. This action cushions water hammer, and smoothes out pumping impulses.

Isolate Vibrations and Motion. Vibration originating from mechanical equipment is absorbed by the PROCO Series 300. Rubber pipe connectors should be installed right after and ahead of the equipment generating the vibration, thus isolating the equipment. As most machinery vibrates in a radial direction from the main shaft, for optimum performance the pipe connector should be installed horizontally and parallel to this shaft. While PROCO Series 300 Rubber Pipe will accept some axial motion, it is principally designed to accept transverse motion. When installed at right angles to the direction of the pipe motion (movement), PROCO rubber pipe connectors can absorb large amounts of expansion. For major two-plane vibration/motion it is best to use two flexible rubber pipe connectors installed at right angles, one to absorb the horizontal vibration and one to absorb the vertical vibration. A tension anchor is usually advisable to stabilize the elbow between the connectors. Note: For maximum vibration transmission reduction, the piping section beyond the rubber connector must be anchored or sufficiently rigid.

Prevents Electrolysis and Electrolytic Action. In chemical applications when metallic connectors are used, they are generally of a metal dissimilar from the pipe-line. This could create an electrolytic galvanic action that could be destructive to the connector, equipment or piping system. The use of the PROCO Series 300 eliminates this potential hazard. Additionally, because the all-rubber connector eliminates metal-to-metal contact at the flange face, electrolysis is stopped.


Systems Misalignment Compensation. In a rigid piping system, the installation of the PROCO Series 300 Rubber Pipe adds a flexible component that is automatically selfcorrecting for misalignment created by structural movements caused by settling, expansion or ground shifts (See Table 3).


Chemical Or Abrasive Service Capability At Minimal Cost: Expensive, exotic metal connectors for chemical service can be replaced with the PROCO Series 300. Fabricated with low cost chemical resistant elastomer such as: Chlorobutyl, EPDM, Gum, Hypalon®, Neoprene and Nitrile; insures a rubber connector compatible with the fluid being pumped or piped (See Table 1). Our Gum or Neoprene products should be specified when handling abrasive slurries. Use PROCO "Chemical to Elastomer Guide" to specify an elastomer for your requirements.

flanged rubber pipe connectors

Reduce System Stress And Strain. Rigid attachment of piping to critical or mechanical equipment can produce excessive loading. Thermal or mechanically created strain-stress-shock are cushioned and absorbed with the installation of a flexible PROCO Series 300 Rubber Pipe.

Full Flow With Less Turbulence Or Material Entrapment. The smooth bore of the PROCO Series 300 Rubber Pipe Connector allows full flow without turbulence. Metallic connectors depend upon bellows or convolutions to absorb motion. These bellows/ convolutions could create flow turbulence and also create an area for material entrapment or bacteria growth.

Leak Free Without Gaskets Or Packing. The full-face rubber flange of the PROCO Series 300 Rubber Pipe Connector is selfgasketing. Additionally, the Style 310-R features a molded in place "O-Ring" on each flange-face for faster sealing with less torque at installation and less long-term maintenance. Unlike interlocked metallic connectors, the Series 300 features a onepiece seamless tube that does not require packing. Our rubber connector is suitable for all air, gas, and fluids, including "searching" thin fluids.

Control Rod Assembly Usage. PROCO Style 491 Control Units are designed to protect the Series 300 Pipe Connector from excessive elongation. Control rods must be used: (1) when the piping containing the rubber pipe connector is not anchored and, (2) when the rubber pipe connector is attached to resiliently supported pipe or equipment.

Table	e 4: St	anda	rd D	rilling	y • Cor	nnect	or D	imens	ions • P	ressure	s•We	eights	5		
Nominal		0# Flange ipe • Ring				10# Flange 'ipe • Ring				nensions igure 1		iting Pres tive In P.3		Retaining Ring Weight Per Set	
Pipe Size: Pipe I.D.	Flange 0.D.	Bolt Circle	# of Holes	Size of Holes	Flange 0.D.	Bolt Circle	# of Holes	Size of Holes	"A" Flange Thickness	"B" Body Thickness	Style 310-R	Style 310	Style 320	Style #481 150 Pound	Style #484 300 Pound
.75	3.88	2.75	4	.625	4.62	3.25	4	.750	.591	.472	300	150	300	1.5	2.0
1	4.25	3.12	4	.625	4.88	3.50	4	.750	.591	.551	300	150	300	1.9	2.9
1.25	4.62	3.50	4	.625	5.25	3.88	4	.750	.591	.551	300	150	300	2.4	3.0
1.50	5.00	3.88	4	.625	6.12	4.50	4	.875	.591	.551	300	150	300	2.6	4.4
2	6.00	4.75	4	.750	6.50	5.00	8	.750	.591	.551	250	150	250	3.6	4.3
2.50	7.00	5.50	4	.750	7.50	5.88	8	.875	.591	.591	200	150	250	5.3	5.5
3	7.50	6.00	4	.750	8.25	6.63	8	.875	.591	.591	175	150	250	5.6	6.0
3.5	8.50	7.00	8	.750	9.00	7.25	8	.875	.591	.669	175	150	250	6.5	7.0
4	9.00	7.50	8	.750	10.00	7.88	8	.875	.591	.669	175	150	250	7.3	10.0
5	10.00	8.50	8	.875	11.00	9.25	8	.875	.591	.669	175	150	250	7.9	11.6
6	11.00	9.50	8	.875	12.50	10.63	12	.875	.591	.709	150	150	250	9.1	14.5
8	13.50	11.75	8	.875	15.00	13.00	12	1.000	.591	.787	150	150	250	14.0	19.6
10	16.00	14.25	12	1.000	17.50	15.25	16	1.125	.787	.866	150	150	250	17.0	23.0
12	19.00	17.00	12	1.000	20.50	17.75	16	1.250	.787	.984	150	150	250	24.1	31.3
14	21.00	18.75	12	1.125	23.00	20.25	20	1.250	.787	.984	125*	125	200	26.8	37.0
16	23.50	21.25	16	1.125	25.50	22.50	20	1.375	.787	.984	100*	100	150	32.1	45.0
18	25.00	22.75	16	1.250	28.00	24.75	24	1.375	.875	1.000	100*	100	150	30.6	58.0
20	27.50	25.00	20	1.250	30.50	27.00	24	1.375	1.000	1.000	100*	100	150	35.9	67.0

NOTES: 1. Dimensions shown meet 125/150# standards of: ANSI B-16.1, B-16.24, B-16.5; AWWA C-207 Table 1 and 2, Class D; MSS SP-44 and NBS/PS 15-69. 2. Dimensions shown meet 250/300# standards of: ANSI B-16.1, B-16.24, B-16.5 and MSS SP-44 Class 300.

Vacuum rating is 26" hg. in all cases except where * appears. Pressure rating is based on 170°F. operating temperature.

NATIONWIDE AND CANADA

Nominal Bize: Pipe 1.D. Image of the second s			IV	lovement From N		ty	
18 .236 236 2.96 31.0° 3.2 1 12* 158 158 177 17.7° 3.3 1.25 18 .236 2.36 2.66 2.56° 4.2 1.25 18 .36 1.58 1.58 1.58 1.39 11.3° 4.3 1.5 12* .158 .158 1.18 9.1° 5.6 2 13 .315 .315 .278 21.8° 6.5 2 13 .354 .354 .296 1.38 9.1° 5.6 2 18 .236 .236 1.18 .917 1.38* 9.5 3.0 .354 .354 .246 1.15 1.13 8.5 1.6 3 .24 .315 .138 .59 5.1° 9.7° 1.66 3 .24 .315 .138 .137 1.1.7° 1.37 3.0 .354 <th354< th=""></th354<>	Pipe Size:		58	55	± In. Deflo	± In. of Angu Deflection	
1 12* 158 158 1.77 17.79 3.3 1.25 158 1.56 1.56 1.56 1.00 4.0 1.25 1.28 1.58 1.58 1.58 1.00 4.0 1.5 1.8 2.36 2.36 2.06 5.0 24 315 315 2.66 6.0 1.5 1.8 2.36 2.09 1.67 5.4 2 1.8 2.36 2.36 1.77 13.57 6.8 0.30 354 3.35 2.36 1.77 8.0 30 354 3.34 1.97 1.38 9.5 30 354 3.34 1.97 1.27 1.46 32 4.33 3.35 2.36 1.38 1.06 315 2.66 3.99 7.6° 1.00 32* 1.38 1.31 1.01 1.01 30 354 354 1.88	.75						
10 228 1.58 1.58 1.40° 4.2 1.25 18 236 236 2.36 2.6° 6.0 1.5 18 236 236 2.6° 6.0 1.5 18 236 236 2.0° 6.6° 6.0 1.5 18 236 236 2.0° 6.6° 6.0 2 18 236 236 2.90 16.7° 5.4 2 18 236 236 17.7 13.8° 6.5 2 18 236 236 17.7 13.8° 9.9 9.2 2.5 18 236 236 1.97 13.8° 9.5° 8.2 2.4 315 315 1.18 1.0° 1.0° 1.0° 3.0 .354 .354 1.97 1.3° 1.17 3.0 .354 .354 1.97 1.2° 1.6° 3.0 .354 .354<		12*	.158	.158	1.77	17.7°	3.3
1.25 18 236 236 236 206* 6.0 1.5 158 158 1.39 11.3* 4.3 1.5 24 .315 .315 2.78 21.8* 6.5 2 18 .236 .278 21.8* 6.5 2 18 .236 .278 21.8* 6.5 2 18 .236 .278 21.8* 6.5 2 175 .158 .158 .98 .70* 6.9 2.4 .315 .315 .236 .236 1.77* 8.0 30 .354 .354 .296 1.8* 9.2 9.2 2.4 .315 .315 .138 1.7* 1.8* 9.2 2.4 .315 .315 .138 1.3* 1.7* 1.8* 30 .354 .354 .296 .18 8.2 315 .138 .138 .11.3* 1.7*	<u> </u>						
1.5 $12*$ 158 139 11.3° 4.3 2 136 $.236$ 2.09 16.7° 5.4 2 118 $.236$ 2.78 21.8° 6.5 2 118 $.236$ 2.36 1.77 13.5° 6.8 30 $.354$ $.354$ $.236$ 1.77 13.8° 9.8 9.2 2.5 24 $.315$ $.315$ $.98$ 7.0° 6.9 2.4 $.315$ $.315$ 1.97 13.8° 9.5° 8.6 30 $.354$ $.354$ 2.46 1.55° 10.0 12° 156 1.79° 1.8° 1.7° 1.66° 318 2.36 2.36 1.81° 1.97° 1.66° 32° 3.35° 1.81° 1.97° 1.66° 1.7° 1.66° 3.5° 3.5°	1.25	18	.236	.236	2.36	20.6°	5.0
1.5 18 .236 2.26 2.78 2.18* 6.5 2 18 .236 .158 1.18 9.1° 5.6 2 18 .236 .277 13.5° 6.8 24 .315 .315 .236 1.77 8.0 30 .354 .236 1.77 8.0 30 .354 .236 1.77 8.0 30 .354 .354 .236 1.8 .855 10.0 30 .354 .354 .246 15.5 10.0 315 .18 .236 1.18 8.5° 10.6 324 .315 .315 1.18 1.0° 1.1.7 30 .354 .354 .18 1.0° 1.1.7 30 .354 .354 .18 1.0° 1.1.7 30 .354 .354 .18 .177 13.7° 46 .334 .3315 .18							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12*	.158	.158	1.18	9.1°	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30	.354	.354	2.96	19.8°	9.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	25						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.5			.315			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30 12*				5.7°	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	18	.236	.236	1.18	8.5°	10.6
12 158 .158 .59 5.1° 9.7 3.5 24 .355 .118 .110 .117 .117 .117 .117 3.6 .354 .354 .148 .11.3° .117 .117 .117 .117 3.6 .433 .433 .177 .13.7° .19.7 4 .30 .354 .354 .148 .10.1° .17.4 30 .354 .354 .148 .10.2° .19.7 36 .433 .433 .177 .12.4° .219 48 .472 .472 .18.8° .236 .236 .7 .5° 5 .24 .315 .158 .45 .31° .18.8° .226 12 .158 .158 .45 .31° .18.9° .227 .23 6 .326 .236 .236 .31° .18.9° .33 .34 .30° .35 .30°	3	30	.354	.354	1.97	12.7°	14.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		18*	.236	.236	.89	7.6°	12.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3.5						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		36	.433	.433	1.77	13.7°	19.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	л	24	.315	.315	1.18	9.1°	17.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						10.0°	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	24*	.315	.315	.89	6.1°	24.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ŭ						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		48	.472	.472	1.55	9.9°	39.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18	.158	.158	.47	1.8°	37.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		36	.354	.354	.95	4.1°	70.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		18	.158	.158	.36	1.5°	51.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		36	.354	.354	.71	3.4°	96.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	.118			1.0°	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
48 472 472 95 3.9° 208.0 12 .118 .118 .24 0.7° 83.0 18 .158 .158 .158 .161 .3° 118.0 24* .236 .236 .47 1.7° 153.0 36 36 .354 .354 .71 2.6° 233.0 48 .472 .472 .95 3.4° 294.0 12 .112 .112 .18 0.9° 110.0 18 .158 .158 .050 .24 2.26 2.26 24* .236 .236 .24 1.5° 205.0 36 .354 .36 2.3° 300.0 48 .472 .472 .48 3.1° 394.0 24* .236 .236 .24 1.4° 270.0 36 .354 .36 2.1° 394.0 48 .472 .472 .48 2.7° <td< th=""><th>14</th><td>30</td><td>.276</td><td>.276</td><td>.59</td><td>2.3°</td><td>133.0</td></td<>	14	30	.276	.276	.59	2.3°	133.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	.118	.118	.24	0.7°	83.0
36 354 .354 .71 2.6° 233.0 48 .472 .472 .95 .34° .294.0 12 .112 .112 .18 0.9° 110.0 18 .118 .118 .24 1.5° 205.0 36 .354 .364 2.3° 300.0 48 .472 .472 .48 3.1° 20 24* 236 236 .24 1.5° 36 .354 .354 .36 2.3° 300.0 48 .472 .472 .48 3.1° 394.0 20 36 .354 .36 2.1° 394.0 48 .472 .472 .48 2.7° 519.0	16						
12 .112 .112 .18 0.9° 110.0 18 .118 .118 .24 1.2° 157.5 24* .236 .236 .24 1.5° 205.0 36 .354 .354 .36 2.3° 300.0 48 .472 .48 3.1° 394.0 20 36 .354 .354 .36 2.1° 48 .472 .472 .48 2.1° 394.0 48 .472 .472 .48 2.7° 519.0		36	.354	.354	.71	2.6°	233.0
18 118 118 24 12° 15°. 157.5 24* 236 .236 .24 1.5° 205.0 .24 1.5° 205.0 .24 1.5° 205.0 .24 .25° 300.0 .48 .472 .48 3.1° .394.0 .394.0 .24* .236 .354 .36 .354 .36 .24* .27° .394.0 .27° .519.0 20 36 .354 .354 .36 .21° .394.0 .48 .472 .48 .2.7° .519.0					.95		
36 .354 .354 .36 2.3° 300.0 48 .472 .48 3.1° 394.0 20 24* .236 .236 .24 .14° 270.0 36 .354 .354 .36 .24° .394.0 48 .472 .48 .21° 394.0 48 .472 .472 .48 2.7°	10			.118	.24	1.2°	157.5
20 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	18		.354	.354		2.3°	
20 36 .354 .354 .36 2.1° 394.0 48 .472 .472 .48 2.7° 519.0		48	.472	.472	.48		
	20	36	.354	.354	.36	2.1°	394.0
		48	.472	.472	.48	2.7°	519.0

Table 3: Sizes • Movements • Weights

NOTES:*1.For optimum noise and vibration absorption, use this or longer length.

 The degree of angular movement is based on the maximum rated extension.

3. Larger I.D. or length sizes available. Contact PROCO.

We Ship

World Wide

DISTRIBUTED BY:

INTERNATIONAL

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

convoluted heavy-duty molded PTFE bellows

TM

The PROCO Series 4400 PTFE Molded Bellows Expansion Joints are used for corrosive applications found in: Chemical-Petrochemical, Industrial Process Piping Systems, Power Generating Plants, Pulp/Paper Plants, Water/Wastewater Sewage and Pollution Control Systems where metallic joints/lap joints of PTFE & FEP-lined rubber expansion joints may have been previously used or specified. Specify PROCO Series 4400 Expansion Joints for installation between an-chor points or next to mechanical equipment such as: Absorption Machines, Blowers, Chillers, Compressors, Fans, Graphite Heat Exchangers, Glass Lined Vessels, Pumps, and Exotic Alloy/Glass Lined Piping Systems. The Series 4400 Expansion Joints are designed to: (1) Absorb Pipe Movements/Stress, (2) Reduce System Noise, (3) Reduce Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-up/Surge Forces. Our history in the manufacture of expansion joint products dates back to 1930. When an engineered solution is needed to solve a piping problem, call PROCO.

SERIES

Engineered For Your Application. The PROCO Series 4400 PTFE Expansion Joints are hot formed from a PTFE tube made with a tape wrapping process. The tube is processed so that the PTFE has a low level of crystallinity, which translates into an improved service life. The seamless PTFE tube is also engineered to have a controlled wall thickness and production methods ensure optimum hoop strength, therefore providing an excellent pressure/vacuum to temperature ratio in the finished product. In most cases this can match that of PTFE lined steel pipe and fittings.

The PROCO Series 4400 is available in 2 convolute through 10 convolute configurations. Each convolution profile offers different overall lengths (face-to-face dimensions) and movements to fit the required specification.

Absorbs Pipe-Wall And Fluid-Borne Noise. The PROCO quiet-operating Series 4400 expansion joints are a replacement for "sound transmitting" metallic/lap joints. Pipe-Wall sound loses energy and is absorbed as the noise carried by the piping enters and exits the PTFE section. Fluid-Borne noise is absorbed by the volumetric expansion (breathing of the connector). This action cushions water hammer and smoothes out pumping impulses.

Isolates Vibration And Motion. PROCO Series 4400 PTFE Expansion Joints should be installed right after and ahead of equipment generating vibration in order to isolate the rotating/vibrating equipment from the rest of the piping system. This layout will improve the overall operating performance of the piping system. For optimum performance, the Series 4400 expansion joints should be installed horizontally to the shaft. Vertical and perpendicular installations are also acceptable, as these expansion joints will accept axial, lateral and angular movements as well as vibration. Note: For maximum vibration transmission reduction, the pipe section beyond the PTFE expansion joints must be anchored or sufficiently rigid.

Reduces System Stress and Strain. Rigid attachment of piping to critical or mechanical equipment can produce excessive loading. Thermal or mechanically created strain/stress/shock are cushioned and absorbed with the installation of a flexible PROCO Series 4400 PTFE Expansion Joint. The Series 4400 expansion joint adds a flexible component to the system that automatically self-corrects for misalignment created by structural movements caused by settling, pipe expansion or ground shifts.

Tested Force Pound And Spring Rate Tables. At PROCO we have machine tested several sizes of the Series 4400 expansion joints for Axial Spring Rates and can provide Thrust/Force factors so designers can properly design system restraints. It should be noted that the Series 4400 Molded PTFE Expansion Joints are in accordance with the performance characteristics of the Fluid Sealing Association's Rubber Expansion Joint Division, Technical Handbook Section on Convoluted PTFE Bellows.

Flange And Limit Rods. All PROCO Series 4400 expansion joint flange configurations are made of ductile iron, coated with a rust inhibitive primer to prevent corrosion and are dimensionally tapped to ANSI 125/150# Standards. Hole drilling on centerline, other drilling standards, or other flange materials, (such as epoxy coated flanges), are available on special order. In addition, all PTFE expansion joints are supplied with factory set limit rods to prevent over-extension during operation.

Chemical Service Capability at Minimal Cost. Expensive, exotic metal or PTFE or FEP lined rubber expansion joints for severe chemical service can be replaced with the PROCO Series 4400 PTFE Expansion Joints. The PTFE bellows are vanstoned to ductile iron flanges, which allows all wetted surfaces to come in contact with the PTFE material. Specify the Series 4400 expansion joints where high temperatures coupled with lower pressures or lower temperatures coupled with higher pressures are proposed. Molded from PTFE materials, the Series 4400 offers a low-cost expansion joint that is impervious to chemical attack. Use the PROCO "Chemical to Elastomer Guide" for reference on chemical compatibility.

Services And Locations. PROCO Series 4400 PTFE Expansion Joints have been supplied to, and successfully used by a range of customers worldwide in the process industries for use in both organic and inorganic chemical processing and production, including such demanding applications as agrochemical and pharmaceutical chemical production, acid processing and food manufacture.

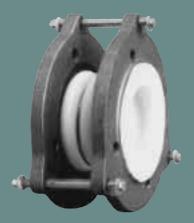
Information • **Ordering** • **Pricing** • **Delivery.** Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

two convolution heavy-duty molded PTFE bellows

TABLE 1

			NT CAPA Ed on T Lution E		BASED	NG RATE CA ON 1" OF I Pressure				EXPANS	ION JOIN	IT FLANGI	E DRILLI	NG											
MINAL E I.D.	Neutral Length Inches	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE FLANGE "A"	FLANGE THICKNESS	NOMINAL FLANGE Diameter	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	, e hydro:	°l statica	F Ily test		g.	VACUUM	WEIGHT / LBS
NOI	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	Н#	불로	BOI	ĐĔ	DIA	DIA		E#	70 °	100°	150°	200 °	250 °	300 °	350°	400 °	Hg at Temp.	WE
1.00	1.772	.276	.157	16	1485	971	2342	4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50	29.9" @ 390°F	4
1.25	1.969	.315	.157	16	1485	971	2342	4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 390°F	6
1.50	2.165	.315	.157	16	1485	971	2342	4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 390°F	8
2.00	2.362	.433	.236	12	1999	971	2342	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50	29.9" @ 390°F	9
2.50	2.362	.433	.236	12	2170	971	2342	4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	29.9" @ 390°F	10
3.00	2.560	.512	.276	11	2627	1085	2570	4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	29.9" @ 390°F	12
4.00	2.756	.591	.315	10	2627	1142	2741	8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50	29.9" @ 390°F	14
5.00	2.953	.591	.315	9	3083	1313	3026	8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	29.9" @ 390°F	18
6.00	2.953	.630	.315	8	3655	1485	3940	8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	29.9" @ 390°F	22
8.00	2.953	.669	.315	7	4229	1771	5082	8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50	29.9" @ 260°F	32
10.00	3.150	.748	.354	7	4968	1999	5539	12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50	29.9" @ 260°F	49
12.00	3.347	.748	.354	6	5621	2341	6338	12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	29.9" @ 260°F	57
14.00	3.346	.787	.394	5				12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50	14.9" @ 70°F	74
16.00	3.543	.787	.394	5	E	IGINEE	RED	16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50	14.9" @ 70°F	107
18.00	3.740	.787	.433	4		PER	,	16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	14.9" @ 70°F	127
20.00	3.937	.787	.433	4		2 PER			1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50	14.9" @ 70°F	150
22.00	3.937	.709	.354	3	SPE	SPECIFICATIONS 20			1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50	14.9" @ 70°F	182
24.00	4.134	.709	.354	3		20				29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50	14.9" @ 70°F	224

Larger diameters, custom lengths, and perfomance requirements available upon request.


Pressure Rating Note:

316 Stainless Steel Anti-Squirm Flanges are available for higher pressure applications. (See Back Cover.)

	Elastic Stop Nut Neutral Length Washers	(ANSI Standard)	MATERIALS OF	CONSTRUCTION	
		Outside "Ear" Diameter	DESCRIPTION	STYLE 4402	
	Washers	Flange Bolt	BELLOWS	WHITE PTFE	
	Metal Reinforcing Ring	Nominal O Circle "A"	FLANGES	DUCTILE IRON	
		Flange Diameter Nominal Size I.D.	REINFORCING RINGS	304 SS	
	and a surface of the second se		LIMIT BOLTS	CARBON STEEL	
	Insulating Sleeves		NUTS	CARBON STEEL	
			INSULATING SLEEVES	POLYETHYLENE	
	Factory Set Molded Ductile Iron		WASHERS	CARBON STEEL / NYLON	
RU	BBER PRODUCTS INC.	Call Toll Free: 1-866-711-		We Shi World W	

WebSales@GoodyearRubberProducts.com

Wide

three convolution heavy-duty molded PTFE bellows

TABLE 2

		BASI	NT CAPA D ON TH LUTION D		BASED	NG RATE CA ON 1" OF M Pressure				EXPANSI	ON JOIN	IT FLANG	E DRILLI	NG											
MINAL E I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) Movement	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	FLANGE THICKNESS	NOMINAL FLANGE Diameter	LIMIT BOLT Diameter	BOLT CIRCLE Limit Bolt "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	RE AT 1) @ e hydros pressui	°l statica	F Ily testa	ed at	g.	VACUUM	WEIGHT / LBS
NO SIZ	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	H #	돋오	B01 FL/	5 王	0N DIA		LIN LIN	LIN "EJ	70 °	100°	150°	200°	250 °	300°	350°	400 °	Hg at Temp.	WE
1.00	2.165	.472	.236	19	857	571	1599	4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50	29.9" @ 350°F	4
1.25	2.559	.748	.236	18	910	571	1599	4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 350°F	6
1.50	2.756	.748	.236	18	971	571	1599	4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 350°F	8
2.00	2.756	.748	.354	16	1142	571	1599	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50	29.9" @ 350°F	9
2.50	3.150	.748	.354	16	1256	571	1599	4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	29.9" @ 350°F	10
3.00	3.346	.984	.472	15	1370	571	1599	4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	29.9" @ 350°F	12
4.00	3.543	.984	.472	14	1370	685	1884	8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50	29.9" @ 350°F	14
5.00	3.740	.984	.472	12	1542	799	1999	8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	29.9" @ 350°F	20
6.00	3.937	1.102	.551	11	1770	857	2227	8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	29.9" @ 350°F	23
8.00	4.134	1.102	.551	10	2227	1085	2798	8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50	29.9" @ 212°F	33
10.00	4.331	1.181	.591	10	2684	1256	3198	12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50	29.9" @ 212°F	51
12.00	4.528	1.181	.591	10	3141	1485	3883	12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	29.9" @ 212°F	59
14.00	4.528	1.181	.591	8				12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50	14.9" @ 70°F	77
16.00	4.921	1.181	.591	8	EN	IGINEE	ERED	16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50	14.9" @ 70°F	110
18.00	5.512	1.181	.591	6		DED	,	16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	14.9" @ 70°F	132
20.00	5.315	1.181	.591	6		PER 2			1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50	14.9" @ 70°F	154
22.00	5.315	.984	.472	5	SPE	SPECIFICATIONS 20			1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50	14.9" @ 70°F	187
24.00	5.512	.984	.472	5		20				29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50	14.9" @ 70°F	231

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

316 Stainless Steel Anti-Squirm Flanges are available for higher pressure applications. (See Back Cover.)

	Elastic	Threaded Hole Size (ANSI Standard)			
	Stop Nut Neutral Length Wash	(Ansis standard)	MATERIALS OF	CONSTRUCTION	
		Outside "Ear" Diameter	DESCRIPTION	STYLE 4403	
	Washers	Flange Bolt	BELLOWS	WHITE PTFE	
	Metal Reinfor		FLANGES	DUCTILE IRON	
		Diameter Nominal Size 1.D.	REINFORCING RINGS	304 SS	
	Insulativ		LIMIT BOLTS	CARBON STEEL	
	Insulation Sleeves		NUTS	CARBON STEEL	
			INSULATING SLEEVES	POLYETHYLENE	
	Factory Set Molded Limit Bolt Ductile		WASHERS	CARBON STEEL / NYLON	
-	ODYEAR	Call Toll Free: 1-866-711-	4673	We Shi	ip
RU	BBER PRODUCTS INC.	WebSales@GoodyearRubberProdu		World W	lide

WebSales@GoodyearRubberProducts.com

four convolution heavy-duty molded PTFE bellows

TABLE 3

			NT CAPA Ed on Fo Lution D		BASED	NG RATE CA On 1" of M Pressure				EXPANS	ION JOIN	IT FLANG	E DRILLI	NG											
MINAL E I.D.	Neutral Length Inches	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE FLANGE "A"	FLANGE THICKNESS	NOMINAL FLANGE DIAMETER	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	RE AT 1) @ e hydros pressui	°l statica	F Ily test	ed at	g.	VACUUM	WEIGHT / LBS
NO	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	H #	돋운	B0 FL/	E 王 王	NO DIA		LIN	LIN "EJ	70 °	100°	150°	200 °	250 °	300°	350°	400 °	Hg at Temp.	WE
1.00	2.560	.591	.315	25	686	457	1200	4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50	29.9" @ 350°F	4
1.25	2.969	.709	.315	24	686	457	1200	4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 350°F	6
1.50	3.346	.709	.315	24	743	457	1200	4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 350°F	8
2.00	3.346	.906	.551	23	971	486	1257	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50	29.9" @ 350°F	9
2.50	3.937	1.024	.591	21	1028	486	1257	4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	29.9" @ 350°F	10
3.00	4.134	1.181	.591	19	1199	486	1342	4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	29.9" @ 350°F	12
4.00	4.528	1.181	.591	18	1199	571	1542	8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50	29.9" @ 350°F	15
5.00	4.921	1.260	.630	16	1285	657	1656	8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	29.9" @ 350°F	22
6.00	5.118	1.260	.669	15	1542	743	1942	8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	29.9" @ 350°F	24
8.00	5.315	1.299	.669	13	1913	943	2484	8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50	29.9" @ 212°F	34
10.00	5.709	1.339	.709	12	2370	1114	2941	12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50	29.9" @ 212°F	52
12.00	5.906	1.339	.709	11	2742	1314	3427	12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	29.9" @ 212°F	62
14.00	5.906	1.339	.709	10				12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50	14.9" @ 70°F	80
16.00	6.300	1.378	.709	10	E	IGINEE	RED	16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50	14.9" @ 70°F	113
18.00	6.300	1.378	.709	8		000		16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	14.9" @ 70°F	136
20.00	6.496	1.378	.709	8		PER		20	1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50	14.9" @ 70°F	159
22.00	6.496	1.260	.591	7	SPE	CIFICA	TIONS	20	1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50	14.9" @ 70°F	193
24.00	6.102	1.260	.591	6				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50	14.9" @ 70°F	236

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

316 Stainless Steel Anti-Squirm Flanges are available for higher pressure applications. (See Back Cover.)

Elastic Washers Stop Nut	(ANSI Standard)	MATERIALS OF	CONSTRUCTION	
	Limit Bolt Outside "Ear" Diameter	DESCRIPTION	STYLE 4404	
Washers	Flange Bolt	BELLOWS	WHITE PTFE	
Metal Reinforcing Ri		FLANGES	DUCTILE IRON	
	Nominal Flange Diameter	REINFORCING RINGS	304 SS	
Joint IDe		LIMIT BOLTS	CARBON STEEL	
Insulating Sleeves		NUTS	CARBON STEEL	
		INSULATING SLEEVES	POLYETHYLENE	
Factory Set		WASHERS	CARBON STEEL / NYLON	
OODYEAR C	all Toll Free: 1-866-711	-4673	We Sh	ip
	WebSales@GoodyearRubberProd		World W	

WebSales@GoodyearRubberProducts.com

five convolution heavy-duty molded PTFE bellows

TABLE 4

			NT CAPA ED ON FI LUTION D		BASED	NG RATE CA 0 ON 1" OF M Pressure				EXPANSI	ON JOIN	IT FLANGI	E DRILLI	NG											
MINAL E I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) DEFLECTION	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE FLANGE "A"	FLANGE THICKNESS	NOMINAL FLANGE DIAMETER	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	, e hydro	°l statica	= Ily testi		g.	VACUUM	WEIGHT / LBS
NO	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	H #	돋운	B0 FL/	Ξ			LIN	ELIN.	70 °	100°	150°	200°	250 °	300°	350°	400 °	Hg at Temp.	ME
1.00	2.560	.779	.394	30	514	343	800	4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50	29.9" @ 350°F	4
1.25	3.150	.984	.472	30	514	343	800	4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 350°F	6
1.50	3.937	.984	.472	30	514	343	800	4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	29.9" @ 350°F	8
2.00	3.937	1.107	.551	26	800	400	914	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50	29.9" @ 350°F	9
2.50	4.724	1.230	.591	25	800	400	914	4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	29.9" @ 350°F	10
3.00	5.118	1.393	.669	24	1028	400	1085	4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	29.9" @ 350°F	13
4.00	5.512	1.475	.709	22	1028	457	1200	8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50	29.9" @ 350°F	15
5.00	5.906	1.516	.709	19	1028	514	1313	8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	29.9" @ 350°F	24
6.00	6.103	1.557	.748	17	1314	629	1656	8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	29.9" @ 350°F	25
8.00	6.693	1.598	.748	15	1599	800	2170	8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50	29.9" @ 212°F	36
10.00	6.890	1.598	.748	13	2056	971	2684	12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50	29.9" @ 212°F	54
12.00	7.087	1.639	.787	13	2342	1142	2970	12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	29.9" @ 212°F	65
14.00	7.087	1.680	.787	12				12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50	14.9" @ 70°F	81
16.00	7.480	1.721	.827	12	EN	IGINEE	RED	16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50	14.9" @ 70°F	117
18.00	7.480	1.721	.827	10		PFR		16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	14.9" @ 70°F	141
20.00	7.677	1.762	.827	10		PER 20			1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50	14.9" @ 70°F	163
22.00	7.677	1.762	.866	8	SPE	SPECIFICATIONS 20			1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50	14.9" @ 70°F	198
24.00	7.874	1.762	.866	8				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50	14.9" @ 70°F	243

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

316 Stainless Steel Anti-Squirm Flanges are available for higher pressure applications. (See Back Cover.)

Elastic Stop Nut Neutral Length	Limit Bolt	MATERIALS OF	CONSTRUCTION	1
	Outside "Ear" Diameter	DESCRIPTION	STYLE 4405	
Washers	Flange Bolt	BELLOWS	WHITE PTFE	
Metal Reinforc		FLANGES	DUCTILE IRON	
	Nominal Flange Diameter	REINFORCING RINGS	304 SS	
Joint Pier		LIMIT BOLTS	CARBON STEEL	
		NUTS	CARBON STEEL	
		INSULATING SLEEVES	POLYETHYLENE	
Factory Set Molded Limit Bolt Ductile I		WASHERS	CARBON STEEL / NYLON	
OODYEAR	all Toll Free: 1-866-711	4673	We Sh	ip
UBBER PRODUCTS INC.	WebSales@GoodyearRubberProd		World V	Ni

WebSales@GoodyearRubberProducts.com

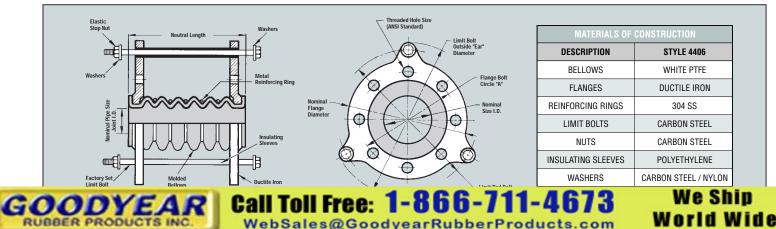

six convolution heavy-duty molded PTFE bellows

TABLE 5

			NT CAPAI SED ON S LUTION D		BASED	NG RATE CA On 1" of N Pressure				EXPANS	ON JOIN	IT FLANGI	E DRILLI	NG											
MINAL E I.D.	Neutral Length Inches	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" RATED Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	FLANGE THICKNESS	NOMINAL FLANGE DIAMETER	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	RE AT) @ e hydro pressu	°l statica	F Ily testi	ed at	g.	VACUUM	WEIGHT / LBS
NDI	NEL	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	н ж	불로	BOI	FLA	DIA		BOI	LIM "EA	70 °	100°	150°	200 °	250 °	300 °	350°	400°	Hg at Temp.	WE
1.00	3.622	.945	.472	38				4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50		4
1.25	4.528	1.181	.591	36				4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	N 0T	6
1.50	4.528	1.181	.591	36				4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50		8
2.00	4.528	1.260	.669	32	EN	IGINEE	RED	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50		9
2.50	5.315	1.496	.748	30				4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	DESIGNED	11
3.00	6.496	1.614	.787	28				4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	DESIGNED	13
4.00	6.496	1.654	.827	27				8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50		15
5.00	6.890	1.693	.827	23		PER		8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	FOR	26
6.00	7.087	1.732	.866	19		PER		8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	run	26
8.00	7.874	1.772	.866	17				8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50		36
10.00	8.071	1.772	.906	15				12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50		55
12.00	8.268	1.850	.906	15				12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	VACUUM	67
14.00	8.268	1.890	.945	14	SPE	CIFICA	TIONS	12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50		82
16.00	8.661	1.969	.984	14				16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50	0551//05	121
18.00	8.661	1.969	.984	12				16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	SERVICE	145
20.00	8.858	2.008	.984	12				20	1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50		168
22.00	8.858	2.047	1.024	11	1			20	1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50		203
24.00	9.055	2.047	1.024	10				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50		249

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

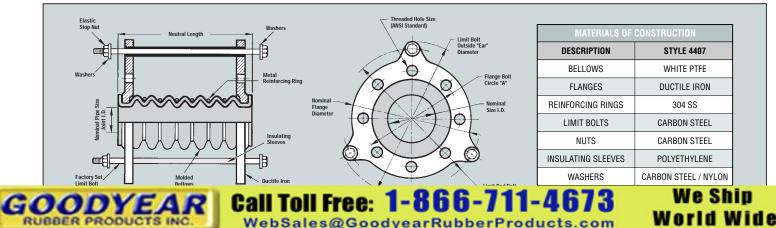

seven convolution heavy-duty molded PTFE bellows

TABLE 6

			NT CAPA D on Se Lution d		BASED	NG RATE CA) on 1" of M Pressure				EXPANSI	ON JOIN	IT FLANGI	E DRILLI	NG											
MINAL E I.D.	Neutral Length Inches	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE FLANGE "A"	FLANGE THICKNESS	NOMINAL FLANGE DIAMETER	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	RE AT 1) @ e hydro: pressui	°I statical	= Ily testa	ed at	g.	VACUUM	WEIGHT / LBS
NDI	NEU	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	H #	불로	B0I FL/	ΞE	DIA	DIA	BOI	LLIN "E#	70 °	100°	150 °	200°	250 °	300°	350°	400 °	Hg at Temp.	WE
1.00	4.134	1.181	.669	45				4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50		4
1.25	5.118	1.378	.866	42				4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	NOT	6
1.50	5.118	1.378	.866	42				4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	NOT	8
2.00	5.315	1.535	.866	42	EN	IGINEE	ERED	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50		9
2.50	6.102	1.654	.945	36				4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	DESIGNED	11
3.00	7.480	1.772	.984	33				4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	DESIGNED	13
4.00	7.480	1.890	1.024	30				8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50		16
5.00	8.268	1.929	1.063	27		050		8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	500	28
6.00	8.268	1.969	1.102	23		PER		8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	FOR	33
8.00	9.055	2.008	1.102	20				8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50		38
10.00	9.252	2.047	1.181	18				12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50		57
12.00	9.449	2.087	1.260	17				12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	VACUUM	69
14.00	9.449	2.165	1.339	16	SPE	CIFICA	TIONS	12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50		85
16.00	9.843	2.323	1.339	16	_			16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50		125
18.00	9.843	2.362	1.378	14				16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	SERVICE	150
20.00	10.039	2.362	1.378	14				20	1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50		174
22.00	10.039	2.441	1.417	13				20	1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50		210
24.00	10.236	2.441	1.417	11				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50		255

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

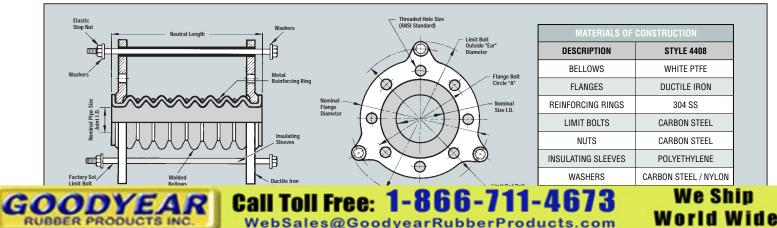

eight convolution heavy-duty molded PTFE bellows

TABLE 7

		BASI	NT CAPA Ed on Ei Lution D		BASED	NG RATE CA) on 1" of N Pressure				EXPANS	ON JOIN	IT FLANG	E DRILLI	NG											
MINAL E I.D.	Neutral Length Inches	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" Rated Lateral Deflection	# HOLES	THREADED Hole Size	BOLT CIRCLE FLANGE "A"	FLANGE THICKNESS	NOMINAL FLANGE DIAMETER	LIMIT BOLT Diameter	BOLT CIRCLE Limit Bolt "B"	LIMIT BOLT "Ear" 0.d.	1.	All u	(PSIG	RE AT 1) @ e hydro: pressui	°l statica	F Ily test	ed at	<i>j</i> .	VACUUM	WEIGHT / LBS
NOI	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	H #	불로	B0I FLA	ĐE 1	DIA	DIA		"E#	70 °	100°	150°	200°	250 °	300 °	350°	400 °	Hg at Temp.	WE
1.00	4.528	1.339	.787	51				4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50		4
1.25	5.709	1.496	1.024	47				4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	N 0T	6
1.50	5.709	1.496	1.024	47				4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	NOT	8
2.00	5.906	1.654	1.063	46	EN	IGINEE	RED	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50		10
2.50	6.890	1.772	1.102	41				4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50		11
3.00	8.071	1.929	1.181	37				4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	DESIGNED	13
4.00	8.661	2.087	1.220	34				8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50		16
5.00	8.858	2.165	1.260	31				8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50		20
6.00	9.055	2.244	1.339	27		PER		8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	FOR	27
8.00	10.236	2.244	1.378	23				8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50		39
10.00	10.630	2.283	1.457	21				12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50		58
12.00	10.630	2.362	1.496	20				12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	VACUUM	72
14.00	10.630	2.559	1.575	18	SPE	CIFICA	TIONS	12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50		88
16.00	11.024	2.717	1.575	18		•		16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50		123
18.00	11.024	2.913	1.654	16				16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	SERVICE	148
20.00	11.220	2.913	1.654	16				20	1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50		172
22.00	11.220	2.953	1.693	15				20	1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50		207
24.00	11.614	2.953	1.693	13				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50		252

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

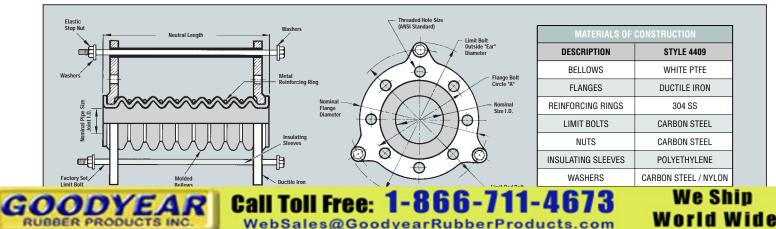

nine convolution heavy-duty molded PTFE bellows

TABLE 8

		BAS	NT CAPA Ed on N Lution D		BASED	NG RATE CA) on 1" of M Pressure				EXPANS	ON JOIN	NT FLANGI	E DRILLI	NG											
MINAL E I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) Movement	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	FLANGE THICKNESS	NOMINAL FLANGE Diameter	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	LIMIT BOLT "EAR" 0.D.	1.	All u	(PSIG	RE AT) @ e hydro pressui	°l statical	= Ily testa	ed at	<i>j</i> .	VACUUM	WEIGHT / LBS
NOI	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	н ж	불로	FLA	FLA	DIA		BOI	LIM "EA	70 °	100°	150°	200°	250 °	300°	350°	400 °	Hg at Temp.	WE
1.00	4.921	1.535	.906	55				4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50		4
1.25	6.300	1.654	1.220	52				4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	N 0T	6
1.50	6.300	1.654	1.220	52				4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50		8
2.00	6.496	1.811	1.260	50	EN	IGINEE	ERED	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50		10
2.50	7.677	1.929	1.299	46				4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	DESIGNED	11
3.00	9.055	2.087	1.378	41				4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	DESIGNED	13
4.00	9.449	2.283	1.417	37				8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50		17
5.00	10.236	2.362	1.457	35		050		8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	500	32
6.00	10.433	2.480	1.575	31		PER		8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	FOR	36
8.00	11.417	2.598	1.614	26				8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50		40
10.00	11.811	2.677	1.693	23				12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50		60
12.00	11.811	2.756	1.732	22				12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	VACUUM	74
14.00	11.811	2.913	1.811	20	SPE	CIFICA	TIONS	12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50		91
16.00	12.205	3.110	1.811	20				16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50		127
18.00	12.205	3.307	1.850	18				16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	SERVICE	152
20.00	12.402	3.307	1.890	18				20	1 1/8- 7	25.000	.866	27.500	.375	28.500	29.134	232	183	150	104	90	75	62	50		176
22.00	12.402	3.346	1.890	16				20	1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50		212
24.00	12.992	3.346	1.929	15				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50		258

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

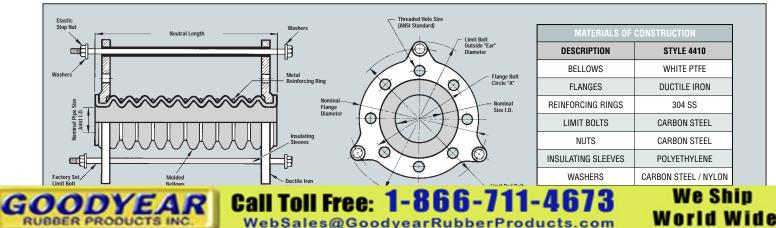

ten convolution heavy-duty molded PTFE bellows

TABLE 9

			NT CAPA Sed on T Lution D		BASED	NG RATE CA) on 1" of M Pressure				EXPANS	ON JOIN	IT FLANG	E DRILLI	NG											
MINAL E I.D.	Neutral Length Inches	± AXIAL (∆x) MOVEMENT	LATERAL (∆y) Deflection	ANGULAR Deflection	FORCE LBS PER 1" Rated Extension	FORCE LBS PER 1" RATED Compression	FORCE LBS PER 1" RATED Lateral Deflection	HOLES	THREADED Hole Size	BOLT CIRCLE FLANGE "A"	FLANGE THICKNESS	NOMINAL FLANGE DIAMETER	LIMIT BOLT Diameter	BOLT CIRCLE LIMIT BOLT "B"	"EAR" 0.D.	1.	All u	(PSIG	RE AT 1) @ e hydro: pressui	°l statica	F Ily test	ed at	g.	VACUUM	WEIGHT / LBS
NOI	INC	IN	IN	DEG.	LB/IN	LB/IN	LB/IN	Η#	불로	FLA	ΞΞ	DIA	DIA	BOI	LIM "EA	70 °	100°	150°	200°	250 °	300 °	350°	400 °	Hg at Temp.	WE
1.00	5.315	1.732	1.063	61				4	1/2- 13	3.125	.551	4.250	.250	5.300	6.102	232	183	150	104	90	75	62	50		4
1.25	6.890	1.890	1.378	58				4	1/2- 13	3.500	.551	4.625	.250	6.700	7.480	232	183	150	104	90	75	62	50	NOT	6
1.50	6.890	1.890	1.378	58				4	1/2- 13	3.875	.630	5.000	.250	6.700	7.480	232	183	150	104	90	75	62	50	101	8
2.00	7.087	2.008	1.496	55	EN	IGINEE	RED	4	5/8- 11	4.750	.630	6.000	.250	7.300	8.071	232	183	150	104	90	75	62	50		10
2.50	8.465	2.047	1.535	51				4	5/8- 11	5.500	.630	7.000	.250	8.100	8.858	232	183	150	104	90	75	62	50	DESIGNED	11
3.00	10.040	2.244	1.575	45				4	5/8- 11	6.000	.630	7.500	.250	8.700	9.449	232	183	150	104	90	75	62	50	DESIGNED	14
4.00	10.433	2.480	1.654	40				8	5/8- 11	7.500	.630	9.000	.250	9.400	10.236	232	183	150	104	90	75	62	50		17
5.00	11.614	2.598	1.732	38		PER		8	3/4- 10	8.500	.630	10.000	.375	11.000	11.417	232	183	150	104	90	75	62	50	FOR	34
6.00	11.417	2.756	1.811	35		PER		8	3/4- 10	9.500	.709	11.000	.375	12.400	13.583	232	183	150	104	90	75	62	50	run	38
8.00	11.417	2.913	1.850	28				8	3/4- 10	11.750	.709	13.500	.375	14.600	15.748	232	183	150	104	90	75	62	50		42
10.00	12.600	3.071	1.890	26				12	7/8- 9	14.250	.709	16.000	.375	16.700	17.913	232	183	150	104	90	75	62	50	VACUUM	62
12.00	13.189	3.150	1.929	24				12	7/8- 9	17.000	.709	19.000	.375	19.700	21.260	232	183	150	104	90	75	62	50	VACUUM	76
14.00	13.189	3.346	1.969	22	SPE	CIFICA	TIONS	12	1- 8	18.750	.787	21.000	.375	22.200	22.244	232	183	150	104	90	75	62	50		94
16.00	13.386	3.346	1.969	22				16	1- 8	21.250	.787	23.500	.375	24.300	25.000	232	183	150	104	90	75	62	50	0551405	130
18.00	13.386	3.543	2.087	20				16	1 1/8- 7	22.750	.866	25.000	.375	25.800	27.362	232	183	150	104	90	75	62	50	SERVICE	156
20.00	13.583	3.543	2.087	20				20	1 1/8- 7	25.000	.866	27.500	.375	28.800	29.134	232	183	150	104	90	75	62	50		181
22.00	13.583	3.583	2.165	18				20	1 1/4- 7	27.250	.945	29.500	.375	30.500	31.890	232	183	150	104	90	75	62	50		218
24.00	14.173	3.583	2.205	17				20	1 1/4- 7	29.500	.945	32.000	.375	32.900	34.646	232	183	150	104	90	75	62	50		264

Larger diameters, custom lengths, and perfomance requirements available upon request.

Pressure Rating Note:

Installation Instructions for Convoluted Molded PTFE Bellows

	TORQUE TABLE LISTING											
SIZE I.D. (IN)	TORQUE (FT/LBS)	SIZE I.D. (IN)	TORQUE (FT/LBS)	SIZE I.D. (IN)	TORQUE (FT/LBS)	SIZE I.D. (IN)	TORQUE (FT/LBS)					
1	15	3	30	10	55	20	85					
1.25	15	4	35	12	60	22	90					
1.5	15	5	40	14	70	24	90					
2	20	6	44	16	75	—	—					
2.5	25	8	50	18	80	_	_					

1. Service Conditions: Make sure the expansion joint ratings for temperature, vacuum, spring rates and movements match the system requirements. Contact PROCO if the system requirements exceed those of the expansion joint selected.

2. Alignment: Expansion joints are not designed to make up for piping misalignment error. Pipe misalignment should be no more than 1/8" in any direction. Misalignment of an expansion joint will reduce the rated movements and can cause stress of material properties, thus causing reduced service life.

3. Limit Rod Bolting: Limit bolts are factory set at the maximum allowable travel position to prevent over extension. Do not remove or alter nuts at any time. Damage or personal injury can result due to changes in limit rod nut settings.

4. Anchoring: Solid anchoring is required whenever the pipeline changes direction. Expansion joints should be located as close as possible to these anchor points. If an anchoring system is not used, any associated pressure thrust can cause excessive movement, ultimately damaging the expansion joint. (It should be noted that the attached limit rods are designed to limit movement and are not designed to handle pressure thrust.)

5. Pipe Support: Piping must be supported by hangers or anchors so expansion joints do not carry any pipe weight.

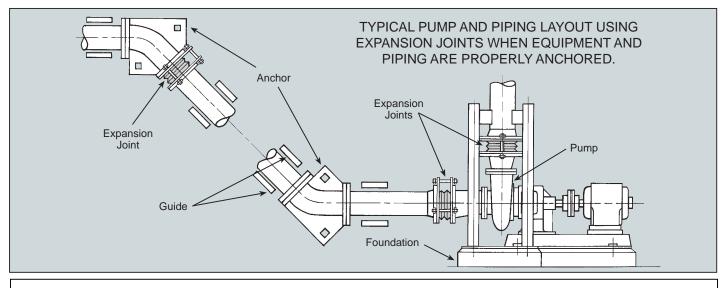
6. Personnel Protection: It is strongly recommended that safety shields be used for all hazardous service to protect against serious personal injury in the event of expansion joint failure. (See Back Cover.)

7. Installation:

a. Store expansion joints with plastic covers in-place to protect PTFE flange surfaces from damage until ready to install.

OPTIONAL PRESSURE RATINGS												
LIGHT DUTY	EXTRA HEAVY DUTY	Deg F	LIGHT DUTY	EXTRA HEAVY DUTY								
PRESSURE	RATING (psig)		PRESSURE RATING (psig)									
145	290	250 °	62	107								
120	217	300 °	48	85								
72	175	350°	44	70								
62	125	400 °	38	65								
	DUTY PRESSURE 145 120 72	LIGHT DUTYEXTRA HEAVY DUTYPRESSURE RATING (psig)14529012021772175	LIGHT DUTY EXTRA HEAVY DUTY Deg F PRESSURE RATING (psig) 250° 145 290 250° 120 217 300° 72 175 350°	LIGHT DUTY EXTRA HEAVY DUTY Deg F LIGHT DUTY PRESSURE RATING (psig) PRESSURE 145 290 250° 62 120 217 300° 48 72 175 350° 44								

b. Check to make sure PTFE surfaces are clean and free of foreign sediment. Remove nicks, burrs and deep scratches with a fine emery cloth. If surface irregularities cannot be completely removed, install a PTFE envelope-type gasket to obtain an adequate seal.


c. Install expansion joints to the prescribed neutral lengths. If expansion joints are used in high temperature processes, it is recommended that units be installed at near extended values. For cold process installations, expansion joints should be installed in a nearly compressed length. These settings will enable the expansion joint to realize full travel capabilities.

d. Thread installation bolts from mating flange side to prevent possible damage to PTFE elements. Extend bolts beyond the expansion joint flange by no more than 1-2 threads. Nuts are not necessary due to threaded flange holes.

e. Tighten flange bolts with a torque wrench. Tighten in an alternate crossing pattern in 20% increments until 80% of final bolt torques have been achieved. Tighten to final torque values (listed in torque table listing) in a clockwise fashion around the flange to ensure bolts carry equal stress burdens.

f. Re-tighten bolts after first cycle of operation. Re-tighten as necessary after every planned maintenance shutdown. All bolts should be re-torqued to the above listed values.

8. Operations: After expansion joints are installed, it may be necessary to air blast the exterior to remove foreign debris, such as metal chips, from between the convolutions. The expansion joint should then be covered with a shield to protect from damage and foreign debris during operation. (Note: Do not weld in immediate vicinity of expansion joint unless it is properly protected.)

Call Toll Free: 1-866-711-467

WebSales@GoodyearRubberProducts.

ENGINEERING DESIGN NOTES:

GOODYEAR

1. It is essential that piping system thrusts be calculated to ensure correct sizing of anchors and pipe supports, plus ensure that allowable thrust forces on adjacent mechanical and rotating equipment are not exceeded. Please use the following formulas:

$T_p = P \cdot T_f$

 T_{P} is the pressure thrust (Ib_f), P is the system operating pressure (Psig) and T_{1} is the thrust factor (or bellows effective area [in²]). The pressure thrust, T_{P} , will act in the axial direction and must be added to the axial

$Rx = T_p + (Fx \bullet \Delta x)$

Rx is the pipe support reaction force (lb_f), **T**_P is the pressure thrust (lb_f), **Fx** is the axial spring force of the unit and Δ **x** is the expected or designed axial movement of the unit (See Tables 1-9).

2. It should be noted that axial spring rate values found in Tables 1 through 9 are based on an ambient temperature ($70^{\circ}F$) and will decrease as the system temperature rises. In addition, spring rates decrease over

We Ship

ahiW hiroW

Expansion Joint Accessories

Spray Shields

PROCO Spray Shields are used to help prevent injury to personnel or damage to equipment in the event of a leak or sprayout at expansion joint connections of acids, caustics, chlorine and other dangerous liquids.

- Same quality design as other cloth shields
- pH indicating patch to signal leaks
- Weep holes behind patch allow indicator to change color
- Attached by Velcro fasteners and drawstrings
- Allows for full movement of the expansion joint
- Available for all PROCO style joints

When under pressure, a longer bellows will react the same as a column when subjected to compression. At some point both will buckle or "squirm". PROCO can offer a solution to prevent this squirming effect during operation or testing.

Squirm can cause a catastrophic failure of the expansion joint, and serious thought must be given to this condition at

time of system engineering. If desired, PROCO can offer a design that will eliminate the squirming effect . Once manufactured, a hydrostatic test of the joint provides assurance that it will hold its form under pressure. If a hydrostatic test is required, it should be specified at the time of quotation.

portouriere	- and a second of the
	22
2 4	
2 4	E-C
1	
T S	
	23
STABLE	SQUIRMED
BELLOWS	BELLOWS

"When personnel safety and equipment performance are concerns ... contact PROCO."

Demand the best — insist on PROCO".

- Same-day shipping
- Knowledgeable sales staff that has average of 12 years experience with expansion joints
- Daily UPS[®] pick-up
- Preselected freight carriers to minimize "interline transfer"
- Emergency service for nights, weekends, and even holidays
- Complete expansion joint product line
- Largest inventory in North America

DISTRIBUTED BY:

Warning: Expansion joints may operate in pipelines or equipment carrying fluids and/or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect personnel in the event of leakage or solash. Note: Pining must be properly aligned and appred to prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and properly aligned and appred to prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and properly aligned and appred to prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and provide the prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and provide the prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage to an expansion joint. Movement must not exceed specified ratins and control units are always and prevent damage. The specified ratins and control units are always and prevent damage to an expansion joint. Movement damage to an expansion joint damage to an expansion joint. Movement damage to an expansion joint damage to an expansion joint. Movement damage to an expansion joint damage to an expansion joint. Movement damage to an expa

WebSales@GoodyearRubberProducts.com

SERIES SERIES 5 sleeve type pipe connectors

The PROCO Series 450 Sleeve Type Pipe Connectors are used for tough demanding applications found in: Refridgeration Pump Systems, Industrial Process Piping Systems, Power Generating Plant Pump Systems, Pulp/Paper Plant Pump Systems, Water-Wastewater Sewage and control systems where lower pressure and sleeve ends are used in lieu of flanged spool type rubber expansion joints. The Series 450 Sleeve Type Pipe Connectors are constructed of Neoprene rubber and reinforced with impregnated woven nylon.

The PROCO Series 190-D Navy Sleeve Type Pipe Connectors are used for tough demanding marine applications found in: Shipboard Fuel Oil, Ballast and Bilge Drainage Systems. (The PROCO Series 190-D Navy Sleeve Type Pipe Connectors are constructed of the same materials as the Series 450 and come with an aluminized glass cloth outer cover to meet Mil-E-15330 Class B specification.)

ſ	Dimensions			able Movem	Operating Conditions			For Move	Wt Lbs.		
Nominal Pipe	O.D. of Pipe	Length of	1	Axial	Angular ±	Pressure (PSIG)	Vacuum	Temp F°	Axial	Axial	Sleeve
Size	I.D. of Joint	Joint	Extension	Compression	± Degrees	Note 1	(In. Hg.)	Note 2			Sieeve
1.5	1.900	7.0	.5	1.0	10°	75	20	225	30	26	1.4
2.0	2.375	7.0	.5	1.0	10°	75	20	225	35	30	1.6
2.5	2.875	7.0	.5	1.0	10°	75	20	225	40	34	1.8
3.0	3.5	7.0	.5	1.0	10°	75	20	225	45	40	2.0
3.5	4.0	7.0	.5	1.0	10°	75	20	225	48	43	2.2
4.0	4.5	7.0	.5	1.0	10°	75	20	225	50	45	2.4
4.5	5.0	7.0	.5	1.0	10°	75	20	225	53	52	2.7
5.0	5.563	7.0	.5	1.0	10°	75	20	225	57	60	2.9
6.0	6.625	7.0	.5	1.0	10°	75	20	225	65	75	3.4
8.0	8.625	7.0	.5	1.0	10°	75	20	225	100	145	4.3
10.0	10.750	7.0	.5	1.0	10°	75	20	225	265	255	5.1
12.0	12.750	7.0	.5	1.0	10°	75	20	225	650	400	6.7

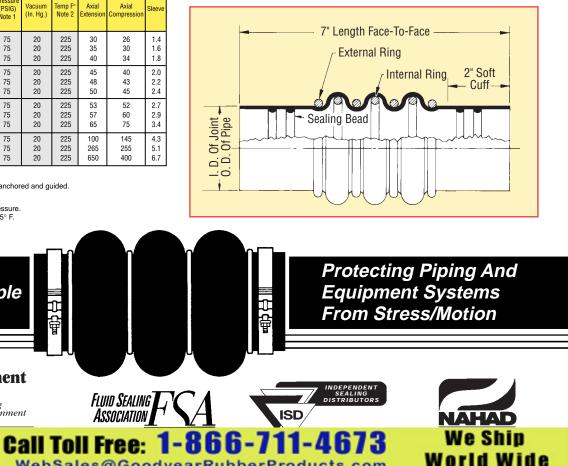
Coupling to be slipped over pipe to a depth of 2"

Coupling is a flexible member, and pipe must be properly anchored and guided

All dimensions are in inches.

Notes: 1. Burst pressure rated at four times operating pressure. 2. Can withstand an intermittent temperature of 275° F

The Expansion Joint People


GOODYEAR

Specify the PROCO Series 190-D and Series 450 for installations near mechanical equipment in piping systems to: (1) Absorb Pipe/Movement/Stress, (2) Reduce system Noise, (3) Isolate Vibration, (4) Eliminate Electrolysis, (5) Compensate Alignment/Offset & (6) Protect Against Start-Up/Surge Forces. Our history in expansion joint products dates back to 1930. When you need an engineered solution to a piping systems problem, call PROCO.

Construction of Sleeve Type Pipe Connectors: The Series 190-D and Series 450 Sleeve Type Connectors are constructed of neoprene rubber and reinforced with impregnated woven nylon. Sealing beads are molded on the interior of the sleeve and provide extra sealing action for the clamping area. Internal reinforcing rings prevent deformation of the connector during surge or temporary negative pressure conditions. The outer reinforcement rings are provided to add external reinforcement.

Fastening Method: The Series 190-D and Series 450 Sleeve Type Pipe Connectors require heavy duty, stainless steel, 1" wide "T" bolt clamps to provide proper clamping strength. Clamps are not stocked by PROCO Products, Inc. and are to be provided by others.

WebSales@GoodyearRubberProduct

The largest inventory in North America!

PROCO PRODUCTS, INC.

PROCO has a vast array of Style/Elastomer configurations. We have an inventory to 72" diameter and can ship your requirement the same business day. With over 16 years of average experience in the expansion joint industry, our sales staff can answer any of your questions and help to solve your problems.

"The Expansion Joint People"

WebSales@GoodyearRubberProduct

Speed Is Our Strengt

- Same-day shipping
- Knowledgeable sales staff that has an average of 16 years experience with expansion joints
- Daily UPS[®] and ROADWAY[®] pick-up
- Preselected freight carriers to minimize "interline transfer"
- Emergency service for nights, weekends, and even holidays
- Complete expansion joint product line
- Largest inventory in North America

DISTRIBUTED BY:

We Ship

world Wide

INTERNATIONAL

non-metallic flexible fan connectors

SERIE\$

The PROCO Series 520, Series 530, and Series 540 non-metallic connectors are designed to match inlet and outlet flanges of most industrial fan manufacturers and are found in: Ventilating Systems, Industrial Process Ducting Systems, Chemical-Petrochemical Plants, Power Generating Plants, Pulp/Paper Plants, Water-Waste Water Sewage and Odor Control Ducting Systems. Specify the PROCO Series 520, Series 530 and Series 540 non-metallic connectors for installation between anchor points or next to mechanical equipment such as: Fans, Blowers, Compressors and Hot Air Ducts. The PROCO Series 500 non-metallic flexible connectors are designed to: (1) Absorb Ducting Movements, (2) Reduce System Noise, (3) Isolate Vibration, (4) Compensate Alignment/ Offset. Our history in the manufacture of expansion joint products dates back to 1930. When an engineered solution is needed to solve a ducting problem, call PROCO.

Engineered For Your Application: The PROCO Series 500 non-metallic connectors are available in U-Designs, Arch-Designs and W-Designs. Each style offers different movement and pressure ratings to fit required specification. Available styles include:

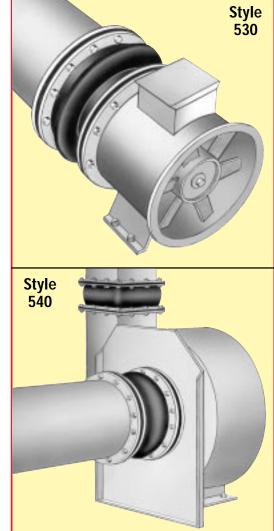
• **Style 520:** Known as a U-Type, this integrally flanged non-metallic connector is found in applications where large movements are required and where vibration and sound absorption are needed. This non-metallic fan connector can be manufactured in both round and rectangular shapes.

• Style 530: Known as an Arch-Type, this integrally flanged non-metallic connector is found in applications where large movements and short overall lengths are required. Primarily used for Clean Hot Air/Gas Service, the Style 530 is designed with a high profile molded arch, giving it exceptional movement capabilities. This non-metallic connector can be manufactured in both round and rectangular shapes.

• **Style 540:** Known as a W-Type, this integrally flanged non-metallic connector is found in applications where large movements are required for Standard Hot Air/Gas Service. The Style 540 is designed with a molded radius allowing for greater movement capability and should be used when the U-Type (520) does not meet movement specifications. This non-metallic connector can be manufactured in both round and rectangular shapes.

• Other Styles Available From PROCO Include: Style 501 (Flat Belt Type), Style 502 (Flat Belt Arch-Type) and 190-K Navy Fan Connector (U-Type or Arch-Type). These styles are included in this brochure.

Retaining Rings/Backing Bars. Retaining rings (round) or backing bars (rectangular) are required for Series 500 non-metallic connectors and can be furnished by PROCO upon request. Standard construction calls for 2" wide by 3/8" thick carbon steel bars drilled to customer specifications. Other materials of construction can be provided upon request. In addition, PROCO can also supply T-Bolt Latch Clamps for round applications under 20" ID.


Available Fabric Materials. PROCO can manufacture the Series 500 non-metallic connectors in a wide selection of materials which include Chlorobutyl, Neoprene, Hypalon®, EPDM and Viton®. Material selection is dependent upon application. Consult the PROCO "Chemical to Elastomer Guide" (available upon request) for appropriate selection of materials.

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

TM

U-DESIGN for standard movements

PROCO Style 520 U-Type Fan/Duct Connectors: The most economical of the integrally flanged designs, the Style 520 is predominately used for fan vibration applications. The fan/duct connector is manufactured in a U-Design configuration with a minimum of one (1) to two (2) plies of reinforced fabric vulcanized into a homogeneous product that is 3/ 16", 1/4" or 3/8" thick. The Style 520 is manufactured with continuous corners. No splices will be made in the corner areas. Listed below is information regarding the Style 520 nonmetallic fan/duct connectors:

System Design Considerations: In designing the Series 500, Style 520 non-metallic fans/ duct connector, several considerations must be taken into account to ensure long lasting service

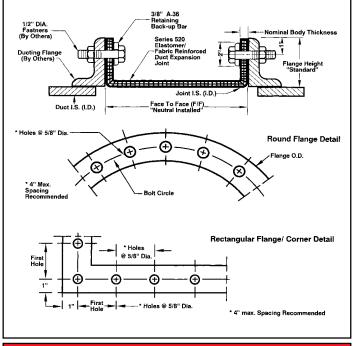
· System Media: The designer and/or requesting party should define the system media to determine the correct elastomer for each application. Evaluation of the gas/air composition should be made during design of the non-metallic fan/duct connector. Abrasion characteristics and external environment conditions should also be taken into account when specifying the fabric element.

• System Temperature: The system operating temperature is of primary importance to the design of a non-metallic fan/duct connector, although the systemdesign is generally specified. It is important to distinguish between operating and design as "design" can include a significant safety factor which may result in an upgraded material or design selection.

• System Pressure: Normal operating pressures and maximum pressures (positive and negative) under upset conditions should be specified. Combinations of pressures and temperatures should be specifically identified.

• Movements: Movements consist of thermal growth resulting from both operating and upset conditions. Individual movements resulting from both conditions should be specified. Maximum installation misalignment should also be taken into account to determine if the non-metallic fan/duct connector design is capable of reacting to a combination of the total maximum movements.

	Style 520 Available Materials												
	For Specific Elastomer Recommendations, See: PROCO [™] "Chemical To Elastomer Guide"												
Styles	PROCO Material Code	Elastomer	Nominal Body Thickness	No. of Reinforcement Plies	Maximum Operating Temp °F	Maximum Pressure Rating (PSI)							
520	BB EE HH	Chlorobutyl EPDM Hypalon®	3/16"	1	300° 300° 225°	±2							
520	NH NN	Neoprene/Hypalon® Neoprene	1/4"	2	225° 212°	±3							
	NP VV	Neoprene/Buna-N Viton®	3/8"	2	212° 400°	±5							


NOTES:

GOODYEAR

Hypalon and Viton are registered trademarks of DuDont Dow Elastomers Expansion Joint "Cover" (outside) can be Hypalon painted on special order. Standard fabric reinforcement is polyester. Other high temperature materials are available upon request. For vacuum applications, all fabric elements should retain sufficient setback from the duct to ensure that belting does not protrude into the flow stream

	Non-Metallic Fan/Duct Connector Weight (pounds per square foot of periphery)											
Nominal		Retaining										
Body Thickness	Chloro- butyl	EPDM	Hypalon®	Neoprene/ Hypalon®	Neoprene	Neoprene/ Buna-N	Viton®	Rings/Bars Linear/Foot				
1/4"	1.6	1.6	1.8	1.8	1.8	1.8	2.5	3.5				
3/8"	2.5	2.5	2.6	2.6	2.6	2.6	4.8	3.0				

Maximum Movement Capabilities 6" Face To Face 12" Face To Face 9" Face To Fac Compressio Axial Extensir Lateral Offset (Inches) (Inches) (Inches) (Inches) (Inches) (Inches Inches Lateral Offset Inches Inches Axial Axial Axial Axial Axial Extens Extens ^b č .75 .25 .50 1.25 .25 .75 2.0 .50 1.0 to axial compression. Greater lateral offset may be

Design Data Sheet Fan/Duct Connector - Style 520

	tomer (=	Tag No.:				
. of cement es	Maximum Operating Temp °F	Maximum Pressure Rating (PSI)		ltem	Quantity:				
1	300° 300° 225° 225°	±2 ±3		ion	Equipment Adjacent The Connector:				
2	212° 212° 400°	±5		Application	Media: Gas or Air (circle one)	C	3	А	
mers al order.	order. iterials are available upon request.			AI	Location of Joint: (Inlet, Discharge, Bypass)				
setback fr	setback from the duct to ensure that			Size	Duct I.S. or Diameter:				
or We ery)	or Weight			Si	Face To Face:				IN.
leoprene/	Viton®	Retaining Rings/Bars Linear/Foot		Temperature	Operating:				°F
Buna-N 1.8	2.5	3.5		Tempe	Design:				°F
^{2.6}				sure	Operating:				PSI
	12" Face	To Face		Pressure	Design:				PSI
Axial Compression (Inches)	Axial Extension	Lateral Offset (Inches)		Movements	Axial Compression:				IN.
2.0	.50	1.0		lover	Axial Extension:				IN.
ompressio	n Greater lat	eral offset may be							
To	ll Fr	'ee: `	1-1	Bl	66-711-	4673	1	We S	nip

WebSales@GoodyearRubberProducts.com

STYLE

ARCH-DESIGN for ultra high movements

PROCO Style 530 Arch-Type Duct Connectors: The least economical of the integrally flanged designs, the Style 530 is predominately used for applications where movements are large and face-to-face space is a premium. The duct connector is manufactured in an Arch-Design configuration with a minimum of one (1) to two (2) plies of reinforced fabric vulcanized into a homogeneous product that is 3/1/6", 1/4" or 3/8" thick. The flanges shall be an integral part of the expansion joint. The Style 530 is manufactured with a premolded arch. The arch continues through the corner and straight sections and shall be fully developed when in the neutral installation position. Listed below is information regarding the Style 530 non-metallic duct connectors:

System Design Considerations: In designing the Series 500, Style 530 non-metallic duct connector, several considerations must be taken into account to ensure long lasting service.

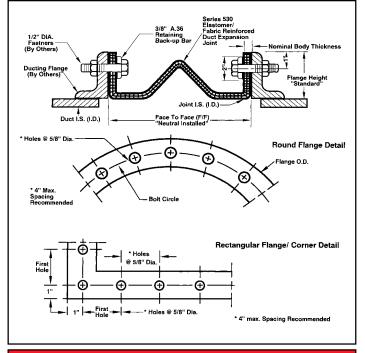
· System Media: The designer and/or requesting party should define the system media to determine the correct elastomer for each application. Evaluation of the gas/air composition should be made during design of the non-metallic fan/duct connector. Abrasion characteristics and external environment conditions should also be taken into account when specifying the fabric element.

· System Temperature: The system operating temperature is of primary importance to the design of a non-metallic fan/duct connector, although the system design is generally specified. It is important to distinguish between operating and design as "design" can include a significant safety factor which may result in an upgraded material or design selection.

· System Pressure: Normal operating pressures and maximum pressures (positive and negative) under upset conditions should be specified. Combinations of pressures and temperatures should be specifically identified.

• Movements: Movements consist of thermal growth resulting from both operating and upset conditions. Individual movements resulting from both conditions should be specified. Maximum installation misalignment should also be taken into account to determine if the non-metallic fan/duct connector design is capable of reacting to a combination of the total maximum movements.

	Style 530 Available Materials												
	For Specific Elastomer Recommendations, See: PROCO™ "Chemical To Elastomer Guide"												
Styles	PROCO Material Code	Elastomer	Nominal Body Thickness	No. of Reinforcement Plies	Maximum Operating Temp °F	Maximum Pressure Rating (PSI)							
530	BB EE HH	Chlorobutyl EPDM Hypalon®	3/16"	1	300° 300° 225°	±2							
550	NH NN NP VV	Neoprene/Hypalon® Neoprene Neoprene/Buna-N Viton®	1/4" 3/8"	2 2	225° 212° 212° 400°	±3 ±5							


NOTES: Hypalon and Viton are registered trademarks of DuDont Dow Elastomers

Expansion Joint "Cover" (outside) can be Hypalon painted on special order. Standard fabric reinforcement is polyester. Other high temperature materials are available upon request. For vacuum applications, all fabric elements should retain sufficient setback from the duct to ensure that belting does not protrude into the flow stream. 3

GOODYEAR

	Non-Metallic Fan/Duct Connector Weight (pounds per square foot of periphery)										
Nominal		Elastomers									
Body Thickness	Chloro- butyl	EPDM	Hypalon®	Neoprene/ Hypalon®	Neoprene	Neoprene/ Buna-N	Viton®	Rings/Bars Linear/Foot			
1/4"	1.6	1.6	1.8	1.8	1.8	1.8	2.5	3.5			
3/8"	2.5	2.5	2.6	2.6	2.6	2.6	4.8	3.0			

Maximum Movement Capabilities 6" Face To Face 9" Face To Face 12" Face To Face mpressid (Inches) mpressi (Inches) Axial Extensio. (Inches) Lateral Offset (Inches) Lateral Offset Inches Extensio (Inches Lateral Offset Inches mpress (Inches Axial Axial Axial Axial Axial Extensi 2 ç 1.25 1.25 2.75 1.5 1.5 2.0 2.0 2.25 3.5

Design Data Sheet Fan/Duct Connector - Style 530

					`				
		Guide"		E	Tag No.:				
of ement s	Maximur Operatin Temp °F	g Pressure		ltem	Quantity:				
	300° 300° 225° 225°	±2 ±3		B	Equipment Adjacent The Connector:				
	212° 212° 400°	±5		Application	Media: Gas or Air (circle one)	C	G	А	
ners order. laterials a	re available	able upon request.		AI	Location of Joint: (Inlet, Discharge, Bypass)				
setback fr	tback from the duct to ensure that		-	Size	Duct I.S. or Diameter:				
or We	Weight			Si	Face To Face:				IN.
eoprene/ Buna-N	Viton®	Retaining Rings/Bars Linear/Foot		Temperature	Operating:				°F
1.8 2.6	2.5 4.8	3.5		Temp(Design:				°F
lities				Pressure	Operating:				PSI
	12" Face	To Face		Pres	Design:				PSI
Axial Compression (Inches)	Axial Extension	(Inches) Lateral Offset (Inches)		Movements	Axial Compression:				IN.
3.5	2.0	2.0]	oven	Axial Extension:				IN.
moreccio	n Greater la	ateral offeet may h							
To	ll Fi	ree:	1-	8	66-711-	4673		We	Ship

ebSales@GoodyearRubberProducts.com

W-DESIGN for maximum movements

PROCO Style 540 W-Type Duct Connectors: An economical integrally flanged design, the Style 540 is predominately used for applications where there are large movements. The duct connector is manufactured in a W-Design configuration with a minimum of one (1) to two (2) plies of reinforced fabric vulcanized into a homogeneous product that is 3/16", 1/ 4" or 3/8" thick. The flanges shall be an integral part of the expansion joint. The Style 540 is manufactured with a premolded arch. The arch continues through the corner and shall be fully developed when in the neutral position. Listed below are considerations regarding the design of the Style 540 non-metallic duct connectors:

System Design Considerations: In designing the Series 500, Style 540 non-metallic duct connector, several considerations must be taken into account to ensure long lasting service.

• System Media: The designer and/or requesting party should define the system media to determine the correct elastomer for each application. Evaluation of the gas/air composition should be made during design of the non-metallic fan/duct connector. Abrasion characteristics and external environment conditions should also be taken into account when specifying the fabric element.

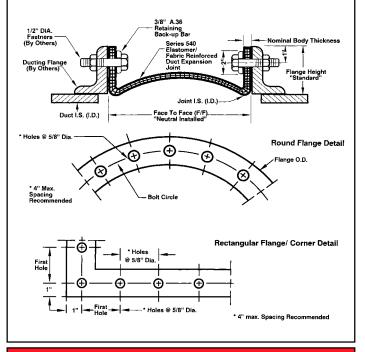
• System Temperature: The system operating temperature is of primary importance to the design of a non-metallic fan/duct connector, although the system design is generally specified. It is important to distinguish between operating and design as "design" can include a significant safety factor which may result in an upgraded material or design selection.

• System Pressure: Normal operating pressures and maximum pressures (positive and negative) under upset conditions should be specified. Combinations of pressures and temperatures should be specifically identified.

• Movements: Movements consist of thermal growth resulting from both operating and upset conditions. Individual movements resulting from both conditions should be specified. Maximum installation misalignment should also be taken into account to determine if the non-metallic fan/duct connector design is capable of reacting to a combination of the total maximum movements.

	Style 540 Available Materials												
	For Specific Elastomer Recommendations, See: PROCO [™] "Chemical To Elastomer Guide"												
Styles	PROCO Material Code	Elastomer	Nominal Body Thickness	No. of Reinforcement Plies	Maximum Operating Temp °F	Maximum Pressure Rating (PSI)							
540	BB EE HH	Chlorobutyl EPDM Hypalon®	3/16"	1	300° 300° 225°	±2							
J4U	NH NN NP VV	Neoprene/Hypalon® Neoprene Neoprene/Buna-N Viton®	1/4" 3/8"	2 2	225° 212° 212° 400°	±3 ±5							

NOTES: Hypalon and Viton are registered trademarks of DuDont Dow Elastomers


3

Expansion Joint "Cover" (outside) can be Hypalon painted on special order. Standard fabric reinforcement is polyester. Other high temperature materials are available upon request. For vacuum applications, all fabric elements should retain sufficient setback from the duct to ensure that belting does not protrude into the flow stream.

GOODYEAR

Non-Metallic Fan/Duct Connector Weight (pounds per square foot of periphery)										
Nominal	Elastomers							Retaining		
Body Thickness	Chloro- butyl	EPDM	Hypalon®	Neoprene/ Hypalon®	Neoprene	Neoprene/ Buna-N	Viton®	Rings/Bars Linear/Foot		
1/4"	1.6	1.6	1.8	1.8	1.8	1.8	2.5	3.5		
3/8"	2.5	2.5	2.6	2.6	2.6	2.6	4.8	3.0		

Maximum Movement Capabilities 6" Face To Face 9" Face To Face 12" Face To Face mpressid (Inches) mpressi (Inches) Lateral Offset (Inches) Axial Extensir Lateral Offset Inches Extensio (Inches Lateral Offset Inches Axial Inches Axial Inches Axial Axial Axial Extensi 2 .50 .75 2.0 .75 1.5 3.75 1.0 2.5 1.5

Design Data Sheet Fan/Duct Connector - Style 540

ltem	Tag No.:	
lte	Quantity:	
m	Equipment Adjacent The Connector:	
Application	Media: Gas or Air (circle one)	G A
Ap	Location of Joint: (Inlet, Discharge, Bypass)	
ze	Duct I.S. or Diameter:	
Size	Face To Face:	IN.
Temperature	Operating:	°F
Tempe	Design:	°F
Pressure	Operating:	PSI
Pres	Design:	PSI
nts	Axial Compression:	IN.
Movements	Axial Extension:	IN.
Σ		

Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

non-metallic flexible fan/duct connectors

SERIE\$

Style 501: Known as a "Flat Belt Type", this non-metallic connector is primarily used for low pressure vibration applications and can be attached to existing metal frames or duct work. The PROCO Series 500, Style 501 duct connector can be manufactured in round or rectangular shapes and can be attached to metal surfaces using clamps (round applications), or backing bars (rectangular applications). The Style 501 can be manufactured in a variety of elastomers and can be sent to the field spliced endless and/or prepared for cold field splice. See Table 1 for material considerations

Style 502: Known as a "Flat Belt Arch-Type", this non-metallic connector is used for low pressure applications where movements are required and can be attached to existing metal frames or duct work. The PROCO Series 500, Style 502 duct connector can be manufactured in round or rectangular shapes and can be attached to metal surfaces using clamps (round applications), retaining rings (round applications), or backing bars (rectangular applications). The Style 502 Flat Belt Arch-Type can be manufactured in a variety of elastomers and can be sent to the field in an endless connection only. See Table 1 for material considerations.

Style 190-K: Known as a "Navy Fan Connector", the Style 190K is manufactured of 3/16" thick polyester fabric reinforced neoprene MIL-R-6855, Class 2, Durometer 40. The Style 190-K Navy Fan Connector can be manufactured in U-Type or Arch-Type forms depending upon application requirements. U-Type connectors can be manufactured with a minimum 3" face-to-face overall length. Arch-Type connectors can be manufactured with a minimum 6" face-to-face overall length. PROCO can manufacture the Series 500, Style 190-K in both round and rectangular shapes. If flange drilling is required for the Style 190-K Navy Fan Connectors, PROCO can drill per customer's specifications. Retaining rings and/or backing bars can be furnished (drilled or undrilled) upon request. See Table 1 for material considerations.

Table 1: Available Styles /Materials										
	fic Elastomer endations, See:	PROCO [™] "Chemical To Elastomer Guide"								
Styles	PROCO Material Code	Elastomer	Nominal Body Thickness	No. of Reinforcement Plies	Maximum Pressure Rating (PSI)					
	BB EE HH	Chlorobutyl EPDM Hypalon®	3/16"	1	±1					
501	NH NN	Neoprene/Hypalon® Neoprene	1/4"	2	±2					
	NP VV	Neoprene/Buna-N Viton®	3/8"	2	±2					
	BB EE HH	Chlorobutyl EPDM Hypalon®	3/16"	1	±1					
502	NH	Neoprene/Hypalon® Neoprene	1/4"	2	±2					
	NP VV	Neoprene/Buna-N Viton®	3/8"	2	±2					
190-K	NN VV	Neoprene Viton®	3/16"	1	±2					

NOTES: Hypalon and Viton are registered trademarks of DuDont Dow Elastomers

Expansion Joint "Cover" (outside) can be Hypalon painted on special order. Standard fabric reinforcement is polyester. Other high temperature materials are available upon request. For vacuum applications, all fabric elements should retain sufficient setback from the duct to ensure that belting does not protrude into the flow stream.

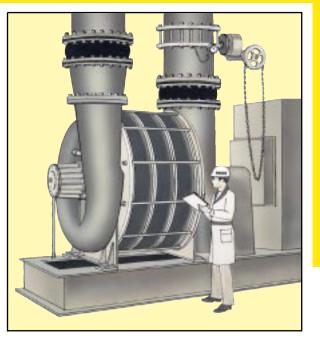
oll Free: **1-86**

Sales@GoodyearRubber

Blowers & Compressors

For "Blower" and "Compressor" applications where expansion joints are required to absorb movements and vibration, please consider using the following rubber expansion joints manufactured by PROCO Products Inc. ...

- Series 240/242 Molded Expansion Joints
- Series RC Concentric Expansion Joints
- Series RE Eccentric Reducer Expansion Joints
- Series 251 Molded Wide-Arch Expansion Joints


PROCO recommends that EPDM and/or Chlorobutyl (Butyl) be used for blower and compressor service. Available inventories sizes range from 1" to 30".

PROCO Series 240/242 Molded Expansion Joints for Blower Service

PROCO Series RE Eccentric Reducer Expansion Joints For Blower Service

PROCO Series RC Concentric Reducer Expansion Joints For Blower Service

> We Ship World Wide

Engineering Note: Non-Metallic flexible fan/duct connectors are critical to system performance. PROCO Products, Inc. encourages each specifying engineer and expansion joint user to become familiar with the F.S.A. Standards and to specify equipment designed in accordance with recommended practices. To obtain a copy of the F.S.A. Technical Handbook, write to the: Fluid Sealing Association • 2017 Walnut Street • Philadelphia, PA 19103

Speed Is Our Strength!

- Same-day shipping
- Knowledgeable sales staff that has an average of 16 years experience with expansion joints
- Daily UPS[®] and ROADWAY[®] pick-up
- Preselected freight carriers to minimize "interline transfer"

- Complete expansion joint product line
- Largest inventory in North America

DISTRIBUTED BY:

The PROCO Series 700 *ProFlex* Rubber Check Valve is a cost effective way to control back pressures from sewage treatment plants, outfalls and tidal operations. They are a fully passive flow device requiring neither maintenance, outside sources of power or manual assistance to operate.

The PROCO Series 700 *ProFlex* Rubber Check Valves are offered as direct replacements for ineffective and maintenance-ridden flap type check valves, which are commonly known to seize, rust and bind in unwanted positions. Unlike flap type valves, the *ProFlex* rubber check valves will handle large obstructions without jamming or having swing gates binding open. Specify the PROCO Series 700 *ProFlex* Rubber Check Valves to provide backflow protection from: (1) Sewage slurries, (2) Outfalls to ocean fronts from heavy rainfall activity, (3) Prevention from land erosion due to back flow conditions, (4) Protection from saltwater to fresh water ponds or catch basins and numerous other water based applications. Our history in the manufacture of rubber piping products dates back to 1930. When an engineered solution is needed to solve a piping or backflow problem, call PROCO.

The introduction of the PROCO Series 700 *ProFlex* Rubber Check Valves is the latest addition to the PROCO line, which has been specifically designed for the Water and Waste Water industry.

With current global awareness for clean water and the urgency to have all water treatment plants operating under stricter standards, the PROCO Series 700 *ProFlex* Rubber Check Valves will also be available in NSF61 approved Nitrile for all potable water and sewage applications. This will include water treatment plants, direct installation on potable water pump systems and other piping systems directly related to the potable water industry.

The PROCO Series 700 *ProFlex* Rubber Check Valves are available in a Flanged Type (Style 710), or a Sleeved Type (Style 730).

• Style 710 — Flanged Type: Designed to bolt directly to existing flanges or new installations, flanges are drilled 150# standard. Other drilling standards such as: ANSI 250/300#, British Standard BS-10, JIS, and DIN as well as square flanges are also available upon request. The Style 710 can be installed in either a vertical or horizontal application.

• Style 730 — Sleeve Type: Designed to easily slip over existing pipe and affixed with heavy-duty Stainless Steel clamps. The Style 730 can be installed in either a vertical or horizontal application.

Table 1: Available Materials • Temperatures

For Specific Elastomer Recommendations, See: PROCO™ "Chemical To Elastomer Guide"											
PROCO Material Codes	Cover ^{1, 2} Elastomer	Tube Elastomer	Maximum Operating Temp. °F (°C)	Branding Label Color	F.S.A. Material Class						
BB	Chlorobutyl	Chlorobutyl	250° (121°)	Black	STD. III						
EE	EPDM	EPDM	250° (121°)	Red	STD. III						
NH	Neoprene	Hypalon®	212° (100°)	Green	STD. II						
NN	Neoprene	Neoprene	225° (107°)	Blue	STD. II						
PP	Nitrile	Nitrile ³	225° (107°)	Yellow	STD. II						
NR	Neoprene	Natural Rubber	180° (68°)	White	STD. I	_					
NV	Neoprene	Viton®	225° (107°)	Orange	STD. III						

Notes: Hypalon® and Viton® are registered trademarks of DuPont Dow Elastomers. All products are reinforced with polyester tire cord.

1. Check Valve "cover" can be coated with Hypalon® on special order.

Elastomers: All of the PROCO Series 700 *ProFlex* Rubber Check Valves are available in a various selection of elastomers (see Table 1 below) and back pressure capabilities to suit most applications.

The PROCO Series 700 *ProFlex* Rubber Check Valves will not freeze or deform and function solely on inlet and back pressures which will be present in most applications.

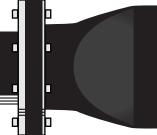
Each valve is carefully constructed using the finest of engineered materials and built by the most experienced rubber technicians in the industry. All check valves are engineered in precise detail to ensure proper operation and will provide years of unhindered operation and troublefree service.

Benefits of the PROCO Series 700 ProFlex Rubber Check Valves:

- All rubber construction resists abrasive slurries
- NSF61 approved materials
- · Very quiet operation with no water hammer
- · Unique design prevents backflow
- Negligible maintenance and energy costs
- Will not warp or freeze
- Quick interchange with any flap type check valve
- Available in sizes 1" to 96"
- · Available with special IDs to suit concrete pipe

For your complete project requirement PROCO also maintains the largest inventory of expansion joints in the world. Rubber, PTFE Lined, Plastic or Metal Hose — PROCO can ship the products you need when you need them! In fact, when it comes to expansion joints, **if PROCO doesn't have them in stock ... nobody does!**

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.


We Ship

World Wide

© PROCO PRODUCTS, INC. Rev. 00 10/05

Call Toll Free: 1-866-711-4673

bSales@GoodyearRubberProducts.com

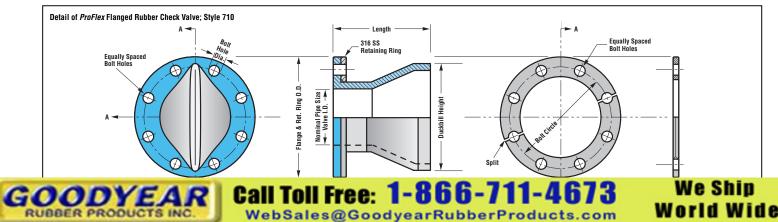
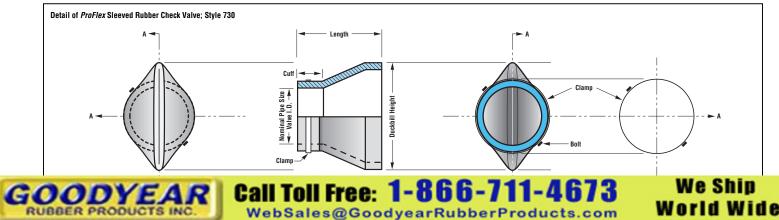


Table 2: Sizes • Drilling • Weights														
NOMINAL 1 PIPE SIZE Inch / (mm)		lard Dimensio	Dimensions for PROCO Style 710		Standard Drilling for PROCO Style 710							WEIGHT ²		
				Duckbill Height Inch / (mm)		Flange O.D. Inch / (mm)		Bolt Circle Inch / (mm)		No. of Holes	Size of Holes Inch / (mm)		lbs / (kgs)	
1	(25)	4	(102)	2.125	(54)	4.25	(107.95)	3.13	(79.50)	4	0.625	(15.9)	3	(1.4)
1.5	(40)	5	(127)	2.625	(67)	5.00	(127.00)	3.88	(98.55)	4	0.625	(15.9)	4	(1.8)
2	(50)	6.5	(165)	3.875	(99)	6.00	(152.40)	4.75	(120.65)	4	0.750	(19.1)	6	(2.7)
2.5	(65)	7.5	(191)	4.625	(118)	7.00	(177.80)	5.50	(139.70)	4	0.750	(19.1)	8	(3.6)
3	(80)	8.5	(216)	5.500	(140)	7.50	(190.50)	6.00	(152.40)	4	0.750	(19.1)	10	(4.5)
4	(100)	10	(254)	7.375	(188)	9.00	(228.60)	7.50	(190.50)	8	0.750	(19.1)	14	(6.4)
5	(125)	12	(305)	8.750	(223)	10.00	(254.00)	8.50	(215.90)	8	0.875	(22.2)	17	(7.7)
6	(150)	13	(330)	10.500	(267)	11.00	(279.40)	9.50	(241.30)	8	0.875	(22.2)	22	(10.0)
8	(200)	15	(381)	13.750	(350)	13.50	(342.90)	11.75	(298.45)	8	0.875	(22.2)	27	(12.2)
10	(250)	17	(423)	17.000	(432)	16.00	(406.40)	14.25	(361.95)	12	1.000	(25.4)	39	(17.7)
12	(300)	19	(483)	19.625	(499)	19.00	(482.60)	17.00	(431.80)	12	1.000	(25.4)	62	(28.1)
14	(350)	21	(533)	24.750	(629)	21.00	(533.40)	18.75	(476.25)	12	1.250	(31.8)	81	(36.7)
16	(400)	24	(610)	26.500	(674)	23.50	(596.90)	21.25	(539.75)	16	1.250	(31.8)	125	(56.7)
18	(450)	26	(661)	29.750	(756)	25.00	(635.00)	22.75	(577.85)	16	1.250	(31.8)	210	(95.3)
20	(500)	32	(813)	31.500	(801)	27.50	(698.50)	25.00	(635.00)	20	1.250	(31.8)	312	(141.5)
24	(600)	42	(1067)	43.000	(1093)	32.00	(812.80)	29.50	(749.30)	20	1.375	(34.9)	410	(186.0)
28	(700)	45	(1143)	46.000	(1169)	36.50	(927.10)	34.00	(863.60)	28	1.375	(34.9)	483	(219.1)
30	(750)	47	(1194)	49.000	(1245)	38.75	(984.25)	36.00	(914.40)	28	1.375	(34.9)	555	(251.7)
32	(800)	53	(1346)	51.000	(1296)	41.75	(1060.45)	38.50	(977.90)	28	1.625	(41.3)	605	(274.4)
36	(900)	58	(1473)	55.250	(1404)	46.00	(1168.40)	42.75	(1085.85)	32	1.625	(41.3)	665	(301.6)
42	(1050)	62	(1575)	66.250	(1683)	53.00	(1346.20)	49.50	(1257.30)	36	1.625	(41.3)	965	(437.7)
48	(1200)	72	(1829)	74.500	(1893)	59.50	(1511.30)	56.00	(1422.40)	44	1.625	(41.3)	1005	(455.9)
54	(1350)	74	(1880)	78.250	(1988)	66.25	(1682.75)	62.75	(1593.85)	44	2.000	(50.8)	1085	(492.1)
60	(1500)	82	(2083)	85.000	(2159)	73.00	(1854.20)	69.25	(1758.95)	52	2.000	(50.8)	1285	(582.9)
72	(1800)	98	(2489)	105.000	(2667)	86.50	(2197.10)	82.50	(2095.50)	60	2.000	(50.8)	1500	(680.4)

Notes: 1. Larger sizes available upon request.

2. Weights are approximate.



ProFlex sleeved rubber check valves

				Standard Dimensions for	PROCO Style 730			WEIG	HT ²	
	SIZE (mm)	Leng Inch / (1	th mm)	Collar Wie Inch / (mi		Duckbill H Inch / (n	eight 1m)	lbs / (kgs)		
1	(25)	4	(102)	1.000	(25)	2.125	(54)	2	(0.9)	
1.5	(40)	5	(127)	1.000	(25)	2.625	(67)	4	(1.8)	
2	(50)	6.5	(165)	1.500	(38)	3.875	(98)	5	(2.3)	
2.5	(65)	7.5	(191)	2.000	(51)	4.625	(117)	8	(3.6)	
3	(80)	8.5	(216)	3.000	(76)	5.500	(140)	11	(5.0)	
4	(100)	12	(305)	3.000	(76)	7.375	(187)	12	(6.8)	
5	(125)	14	(356)	3.000	(76)	8.750	(222)	15	(7.7)	
6	(150)	16	(406)	4.000	(102)	10.500	(267)	19	(9.5)	
8	(200)	17	(432)	4.000	(102)	13.750	(349)	22	(11.3)	
10	(250)	19	(483)	4.000	(102)	17.000	(432)	35	(16.3)	
12	(300)	25	(635)	6.000	(152)	19.625	(498)	54	(25.9)	
14	(350)	27	(686)	6.000	(152)	24.750	(629)	69	(33.1)	
16	(400)	29	(737)	6.000	(152)	26.500	(673)	115	(54.9)	
18	(450)	31	(787)	6.000	(152)	29.750	(756)	190	(90.3)	
20	(500)	33	(838)	8.000	(203)	31.500	(800)	295	(138.3)	
24	(600)	42	(1067)	8.000	(203)	43.000	(1092)	375	(174.2)	
28	(700)	44	(1118)	8.000	(203)	46.000	(1168)	455	(206.4)	
30	(750)	46	(1168)	10.000	(254)	49.000	(1245)	529	(240.0)	
32	(800)	53	(1346)	10.000	(254)	51.000	(1295)	583	(264.4)	
36	(900)	58	(1473)	10.000	(254)	55.250	(1403)	625	(283.5)	
42	(1050)	61	(1549)	12.000	(305)	66.250	(1683)	910	(412.8)	
48	(1200)	72	(1829)	12.000	(305)	74.500	(1892)	952	(431.8)	
54	(1350)	74	(1880)	12.000	(305)	78.250	(1988)	1025	(454.9)	
60	(1500)	81	(2057)	12.000	(305)	85.000	(2159)	1212	(549.8)	
72	(1800)	98	(2489)	14.000	(358)	105.000	(2667)	1362	(617.8)	

Notes: 1. Larger sizes available upon request.

Weights are approximate.

Frequently Asked Questions to help you understand the ProFlex Rubber Check Valves

1. Does the ProFlex Rubber Check Valve have to be installed in a certain position?

Yes. It should be installed in a vertical position with the bill being the vertical. However, in zero-clearance situations the valve can be rotated up to 30° to gain bottom clearance if required.

2. Is there a preferable angle in which the ProFlex Rubber Check Valve has to be installed?

Because the valve is not reliant on any hinges, gates, or weights the ProFlex Rubber Check Valve can be installed in any angle from vertical to horizontal.

3. What is "Back Pressure"?

When the ProFlex Rubber Check Valve is submerged in a liquid it is subjected to external pressure. It is critical that the maximum depth that the valve will be submerged is specified as this will be considered the maximum back pressure to which the valve will be subjected.

4. What is the required inlet pressure to allow the valve to open?

Typically 1" to 2" of water column over back pressure will normally drain a pipe.

5. What back pressures can the ProFlex Rubber Check Valve withstand?

Back pressures are in direct relation to the size of the valve, on the smaller diameters it is acceptable to specify up to 200 psi of back pressure and on larger diameters a back pressure limitation would be approximately 12 psi. Each ProFlex Rubber Check Valve is manufactured to the exact inlet pressure, back pressure and flow rates which we require from you for manufacture.

6. What are the most common installations?

The ProFlex 710 Flanged Rubber Check Valve is bolted directly to a head wall replacing an existing flap gate. The ProFlex 730 Sleeved Rubber Check Valve is clamped directly to a fabricated flanged nipple or clamped directly to an existing pipe.

7. Can I use the ProFlex Rubber Check Valve on potable water applications?

Yes. One of the optional materials for the ProFlex Rubber Check Valves is the NSF61 approved Nitrile elastomer. Due to the large demand for clean water and potable applications, PROCO is the leading supplier of NSF61 approved material. This will eliminate the concerns commonly affiliated with contaminants or leaching of elastomers in potable water systems.

8. Can the ProFlex Rubber Check Valve be installed on an "out-of-round" pipe? Yes, please have the approximate outside dimensions of the pipe from four (4) different angles to provide proper sizing.

9. Can river currents and ocean waves damage the valves?

In most cases river currents and ocean waves will not damage the ProFlex Rubber Check Valves, but if currents or waves in question are of an abnormal nature, it is suggested that side walls or rock pilings be utilized.

10. Can the ProFlex Rubber Check Valve be used as a back pressure valve?

No, the ProFlex Rubber Check Valves have been designed to offer superior service as a back flow preventer and should not be considered for a back pressure valve.

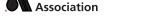
11. Can PROCO make a special design to suit my requirements?

In most instances the ProFlex Rubber Check Valve can be fabricated to suit different applications. Contact PROCO for your requirements.

12. What types of elastomers are available?

The *ProFlex* Rubber Check Valve can be manufactured and supplied to withstand almost any type of media. Most commonly supplied are Nitrile (NSF61 approved), Neoprene, Natural Rubber, Hypalon®, Chlorobutyl, EPDM, and Viton®.

PROCO PRODUCTS, INC.



American Water Works Association

REPRESENTED BY:

13. What types of materials are available for the retaining rings and banding clamps?

ProFlex Rubber Check Valves are supplied with 316 stainless steel retaining rings and 304 stainless steel clamps as standard. Other materials are available upon request.

14. Can the ProFlex 710 be supplied with special flanges or drilling?

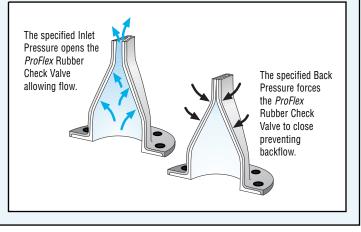
Yes, the standard drilling pattern is ANSI 125/150# drilling. Other drilling standards such as, ANSI 250/300#, BS-10, DIN NP-10 and DIN NP-16, JIS-5K and JIS-10K are available upon special request.

15. Can I install a ProFlex Rubber Check Valve near a residential area?

Yes, one of the unique features of the *ProFlex* Rubber Check Valve is the design of the bill section. While the bill will open and allow passage of fluid when inlet pressure is present, the bill will close and not allow children or animals to crawl inside when there is no inlet pressure. And since the ProFlex Rubber Check Valve is manufactured entirely of rubber compounds there is no chance of loud banging which is commonly heard from flap type valves.

16. Can I use a ProFlex Rubber Check Valve in winter conditions?

Yes, as in any installation the ProFlex Rubber Check Valve will not be hindered by winter or sub-zero installations. If the valve is installed in a running water application the valve will continue to operate satisfactorily, due to the elastomers' unique chemical makeup. If unusual circumstances occur the ProFlex Rubber Check Valve will freeze without any damage and will return to operation upon thaw.


17. Will the ProFlex Rubber Check Valve operate if buried in sand or sediment?

In normal conditions the discharge flow will create a small flow pattern which will then be followed by the flow velocity of the media. This velocity will flush the rest of the sediment away from the valve's opening.

18. What is the maximum temperature that the ProFlex Rubber Check Valve can handle?

Temperatures can range from -65° F (-54° C) to +250° F (+121° C) depending on the specified elastomer.

19. Is the ProFlex Rubber Check Valve suitable for direct sunlight and UV areas? Yes, all ProFlex Rubber Check Valves are manufactured with a highly UV-resistant elastomer cover. In some applications the *ProFlex* Rubber Check Valve may be subjected to oil sludges which make Nitrile the perfect choice for protection.

ProFlex[™] in-line rubber check valves

The PROCO Series 700 *ProFlex* In-Line Rubber Check Valve is a cost effective way to control back pressures from sewage treatment plants, outfalls and tidal operations. They are a fully passive flow device requiring neither maintenance, outside sources of power or manual assistance to operate.

The PROCO Series 700 *ProFlex* In-Line Rubber Check Valves are offered as direct replacements for ineffective and maintenance-ridden check valves, which are commonly known to seize, rust and bind in unwanted positions. Unlike flap type valves, the *ProFlex* In-Line Rubber Check Valves will handle large obstructions without jamming or having gates binding open. Specify the PROCO Series 700 *ProFlex* In-Line Rubber Check Valves to provide backflow protection and protect pumps from: (1) Sewage slurries, (2) Outfalls to ocean fronts from heavy rainfall activity. Our history in the manufacture of rubber piping products dates back to 1930. When an engineered solution is needed to solve a piping or backflow problem, call PROCO.

With current global awareness for clean water and the urgency to have all water treatment plants operating under stricter standards, the PROCO Series 700 *ProFlex* In-Line Rubber Check Valves will also be available in NSF61 approved Nitrile for all potable water and sewage applications. This will include water treatment plants, direct installation on potable water pump systems and other piping systems directly related to the potable water industry.

The PROCO Series 700 *ProFlex* In-Line Rubber Check Valves are available in a Flanged Type (Style 720), or a Slip-In Type (Style 740).

- Style 720 Flanged Type: Designed to bolt directly between two existing pipe flanges. Flanges are drilled 150# standard. Other drilling standards such as: ANSI 250/300#, British Standard BS-10, JIS, and DIN as well as square flanges are also available upon request. The Style 720 can be installed in either a vertical or horizontal application.
- **Style 740 Slip-In Type:** Designed to easily slip into an existing pipe and affixed with a heavy-duty Stainless Steel expandable clamp. The Style 740 can be installed in either a vertical or horizontal application.

Elastomers: All of the PROCO Series 700 *ProFlex* In-Line Rubber Check Valves are available in a various selection of elastomers (see Table 1 below) and back pressure capabilities to suit most applications.

The PROCO Series 700 *ProFlex* In-Line Rubber Check Valves will not freeze or deform and function solely on inlet and back pressures which will be present in most applications.

Each valve is carefully constructed using the finest of engineered materials and built by the most experienced rubber technicians in the industry. All check valves are engineered in precise detail to ensure proper operation and will provide years of unhindered operation and troublefree service.

Benefits of the PROCO Series 700 ProFlex In-Line Rubber Check Valves:

- All rubber construction resists abrasive slurries
- NSF61 approved materials
- Very quiet operation with no water hammer
- Unique design prevents backflow
- Negligible maintenance and energy costs
- Will not warp or freeze
- · Quick interchange with any type of check valve
- Available in sizes 1" to 72"
- · Available to suit all type IDs

For your complete project requirement PROCO also maintains the largest inventory of expansion joints in the world. Rubber, PTFE Lined, Plastic or Metal Hose — PROCO can ship the products you need when you need them! In fact, when it comes to expansion joints, **if PROCO doesn't have them in stock ... nobody does!**

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

Products.com

World Wide

Table 1: Available Materials • Temperatures For Specific Elastomer **PROCO™** "Chemical To Elastomer Guide" **American Water Works** PROCO Material Branding Label F.S.A. Material Maximum Cover 1, 2 Association Tube Operating Elastomer Elastomer Codes Temp. °F (°C) Color Class ΒВ (121°) STD. III Chlorobutvl Chlorobutvl 250° Black EE EPDM EPDM 250° (121°) Red STD. III NH Neoprene Hypalon[®] 212° (100°) Green STD II NN Neoprene Neoprene 225° (107° Blue STD, II PP Nitrile³ 225° (107°) Yellow STD. II Nitrile NR Neoprene Natural Rubber 180° (68°) White STD, I NV Viton® 225° (107°) Orange STD. III Neoprene Notes: Hypalon® and Viton® are registered trademarks of DuPont Dow Elastomers ProFlex[™] is a trademark of PROCO Products, Inc. All products are reinforced with polyester tire cord. Water Environment FLUID SEALING 1. Check Valve "cover" can be coated with Hypalon® on special orde We Ship Toll Free: 1-8 GOODYEAR Cal

bSales@Goodyear

© PROCO PRODUCTS, INC. Rev. 00 1/06

ProFlex[™] in-line flanged rubber check valves

Table	2: Sizes			rking Pres		 Weight 	S								
NOM		Standar	d Dimension:	s for PROCO Sty	le 720			Standard Dril	ling for PROCO	Style 720	1		MAXIMUM WORKING		GHT ²
Inch /	-		ngth / (mm)	Duckbill H Inch / (n		Flange Inch /		Bolt (Inch /		No. of Holes		f Holes ' (mm)	PRESSURE (PSIG)	lbs /	(kgs)
2	(50)	5.75	(146)	1.875	(48)	6.00	(152.40)	4.75	(120.65)	4	0.750	(19.1)	125	5	(2.3)
3	(80)	9	(229)	2.875	(73)	7.50	(190.50)	6.00	(152.40)	4	0.750	(19.1)	125	8	(3.6)
4	(100)	12	(305)	3.875	(98)	9.00	(228.60)	7.50	(190.50)	8	0.750	(19.1)	100	11	(5.0)
5	(125)	15	(381)	4.875	(124)	10.00	(254.00)	8.50	(215.90)	8	0.875	(22.2)	75	13	(5.9)
6	(150)	15.5	(394)	5.875	(149)	11.00	(279.40)	9.50	(241.30)	8	0.875	(22.2)	75	17	(7.7)
8	(200)	16.5	(419)	7.875	(200)	13.50	(342.90)	11.75	(298.45)	8	0.875	(22.2)	75	20	(9.1)
10	(250)	21	(533)	9.875	(250)	16.00	(406.40)	14.25	(361.95)	12	1.000	(25.4)	50	29	(13.2)
12	(300)	26	(660)	11.875	(302)	19.00	(482.60)	17.00	(431.80)	12	1.000	(25.4)	50	47	(21.3)
14	(350)	25	(635)	13.000	(349)	21.00	(533.40)	18.75	(476.25)	12	1.250	(31.8)	50	61	(27.7)
16	(400)	27	(686)	15.000	(400)	23.50	(596.90)	21.25	(539.75)	16	1.250	(31.8)	50	94	(42.6)
18	(450)	29	(737)	17.000	(451)	25.00	(635.00)	22.75	(577.85)	16	1.250	(31.8)	25	158	(71.7)
20	(500)	34	(864)	19.000	(502)	27.50	(698.50)	25.00	(635.00)	20	1.250	(31.8)	25	234	(106.1)
24	(600)	44	(1118)	23.000	(603)	32.00	(812.80)	29.50	(749.30)	20	1.375	(34.9)	25	308	(139.7)
28	(700)	47	(1194)	27.000	(687)	36.50	(927.10)	34.00	(863.60)	28	1.375	(34.9)	25	362	(164.2)
30	(750)	49	(1245)	29.000	(737)	38.75	(984.25)	36.00	(914.40)	28	1.375	(34.9)	25	417	(189.1)
32	(800)	54	(1372)	31.000	(787)	41.75	(1060.45)	38.50	(977.90)	28	1.625	(41.3)	25	454	(206.0)
36	(900)	59	(1499)	35.000	(889)	46.00	(1168.40)	42.75	(1085.85)	32	1.625	(41.3)	25	499	(226.3)
42	(1050)	63	(1600)	41.000	(1041)	53.00	(1346.20)	49.50	(1257.30)	36	1.625	(41.3)	25	729	(330.7)
48	(1200)	74	(1880)	47.000	(1194)	59.50	(1511.30)	56.00	(1422.40)	44	1.625	(41.3)	25	754	(342.0)
54	(1350)	75	(1905)	53.000	(1346)	66.25	(1682.75)	62.75	(1593.85)	44	2.000	(50.8)	25	813	(368.8)
60	(1500)	83	(2108)	59.000	(1499)	73.00	(1854.20)	69.25	(1758.95)	52	2.000	(50.8)	25	964	(437.3)
72	(1800)	99	(2515)	71.000	(1803)	86.50	(2197.10)	82.50	(2095.50)	60	2.000	(50.8)	25	1125	(510.3)

Notes: Higher back pressures can be obtained by using Internal Supports, contact PROCO.

Dimensions are approximate and may change due to pipe dimension changes, inlet, back pressures and flow rates.

Larger sizes available upon request.
 Weights are approximate.

ProFlex[™] in-line slip-in rubber check valves

	INAL ¹		;	Standard Dimensions f	or PROCO Style 74	0		MAXIMUM WORKING	WEIGHT ²	
	SIZE / (mm)	Valve I Inch / (n		Length Inch / (mm)		Duckbill Inch / (PRESSURE (PSIG)	lbs / (
2	(50)	1.250	(32)	6.750	(171)	1.875	(48)	125	4	(1.8)
3	(80)	2.250	(57)	9.000	(229)	2.875	(73)	125	9	(4.1)
4	(100)	3.000	(80)	13.000	(330)	3.875	(98)	100	10	(4.5)
5	(125)	4.000	(100)	16.000	(406)	4.875	(124)	75	12	(5.4)
6	(150)	5.000	(125)	17.000	(432)	5.875	(149)	75	15	(6.8)
8	(200)	6.625	(168)	19.000	(483)	7.875	(200)	75	18	(8.2)
10	(250)	8.625	(219)	21.000	(533)	9.875	(251)	50	28	(12.7)
12	(300)	10.000	(250)	27.000	(686)	11.875	(302)	50	43	(19.5)
14	(350)	11.500	(292)	28.000	(711)	13.000	(349)	50	55	(24.9)
16	(400)	13.500	(343)	31.000	(787)	15.000	(401)	50	92	(41.8)
18	(450)	15.250	(387)	33.000	(838)	17.000	(451)	25	152	(68.9)
20	(500)	17.000	(432)	35.000	(889)	19.000	(502)	25	236	(107.0)
24	(600)	20.500	(521)	37.000	(940)	23.000	(603)	25	300	(136.1)
28	(700)	24.500	(622)	46.000	(1168)	27.000	(686)	25	364	(165.1)
30	(750)	26.500	(673)	51.000	(1295)	29.000	(737)	25	423	(191.9)
32	(800)	28.500	(724)	58.000	(1473)	31.000	(787)	25	466	(211.4)
36	(900)	32.500	(826)	63.000	(1600)	35.000	(889)	25	501	(227.2)
42	(1050)	38.250	(972)	65.000	(1651)	41.000	(1041)	25	728	(330.2)
48	(1200)	44.250	(1073)	74.000	(1880)	47.000	(1194)	25	762	(345.6)
54	(1350)	50.250	(1276)	77.000	(1956)	53.000	(1346)	25	820	(371.9)
60	(1500)	56.000	(1422)	85.000	(2159)	59.000	(1499)	25	969	(439.5)
72	(1800)	68.000	(1727)	102.000	(2591)	71.000	(1803)	25	1089	(494.0)

Notes: Higher back pressures can be obtained by using Internal Supports, contact PROCO.

Dimensions are approximate and may change due to pipe dimension changes, inlet, back pressures and flow rates.

Web

Sales@

Larger sizes available upon request.
 Weights are approximate.

GoodyearRubb

Produc

om

s c

Frequently Asked Questions to help you understand the ProFlex[™] In-Line Rubber Check Valves

1. Does the ProFlex In-Line Rubber Check Valve have to be installed in a certain position?

The ProFlex In-Line Rubber Check Valve can be installed in any position although it is suggested that if installed in a horizontal plane, the bill should be vertical to the plane.

2. In which degree can the ProFlex In-Line Rubber Check Valve be installed?

Because the valve is not reliant on any hinges, gates, or weights the ProFlex In-Line Rubber Check Valve can be installed in any angle from vertical to horizontal.

3. What is "Back Pressure"?

When the ProFlex In-Line Rubber Check Valve is submerged in a liquid it is subjected to external pressure. It is critical that the maximum depth that the valve will be submerged is specified as this will be considered the maximum back pressure to which the valve will be subjected.

4. What is the cracking pressure to allow the valve to open?

Required head pressure will be slightly higher on the in-line valve due their shape.

5. What back pressures can the ProFlex In-Line Rubber Check Valve withstand?

Back pressures are in direct relation to the size of the valve, on the smaller diameters it is acceptable to specify up to 200 psi of back pressure and on larger diameters a back pressure limitation would be approximately 12 psi. Each ProFlex In-Line Rubber Check Valve is manufactured to the exact line pressure, back pressure and flow rates which we require from you for manufacture.

6. What are the most common installations?

The ProFlex 720 In-Line Flanged Rubber Check Valve is bolted between two pipe flanges replacing typical internal swing type check valves, the ProFlex 740 In-Line Slip-In Rubber Check Valves are clamped internally utilizing a stainless steel expanding clamp. The in-line valves are commonly used as pump protection and can be used in vacuum applications.

7. Can I use the ProFlex In-Line Rubber Check Valve on potable water applications?

The standard material for the *ProFlex* In-Line Rubber Check Valve is NSF61 approved Nitrile. Due to the large demand for clean water and potable applications, PROCO will be the leader in supplying NSF61 as its check valve material of choice. This will eliminate the concerns commonly affiliated with contaminants or leaching of elastomers in potable water systems.

8. Can the ProFlex In-Line Rubber Check Valve be installed on an "out-of-round" pipe? Yes, the 740 Slip-In Style is especially suited for out-of-round or badly worn pipe as the expandable clamp applies pressure to the I.D. of the check valve forcing complete sealing against the pipe I.D.

9. Can the ProFlex In-Line Rubber Check Valves be used to create back pressure?

Due to their designs, the 720 and 740 ProFlex In-Line Rubber Check Valves will inevitably create back pressure. The valves have been designed to fit inside an existing pipe, therefore the nominal pipe I.D. has been reduced by at least one pipe diameter creating higher head loss and higher inlet pressure to open the valve.

10. Can PROCO make a special design to suit my requirements?

In most instances the ProFlex In-Line Rubber Check Valve can be fabricated to suit different applications. Contact PROCO for your requirements.

11. What types of elastomer are available?

The ProFlex In-Line Rubber Check Valve can be manufactured and supplied to withstand almost any type of media. Most commonly supplied are Nitrile (NSF61 approved), Neoprene, Gum Rubber, Hypalon®, Chlorobutyl, EPDM, and Viton®.

12. What types of materials are available for the internal clamps?

The ProFlex In-Line Slip-In Rubber Check Valves (Style 740) are supplied with 316 stainless steel internal expanding clamps. Other materials are available upon request. The In-Line Flanged Rubber Check Valve (Style 720) does not require a backing ring as it is installed between mating pipe flanges. A gasket is not required as the Style 720 creates its own sealing face.

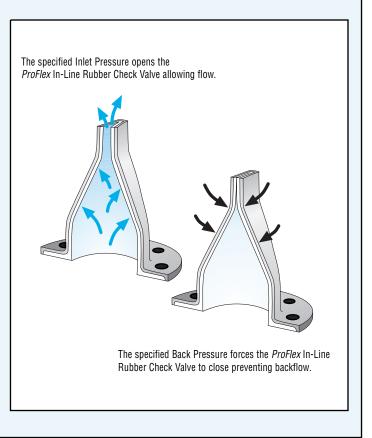
13. Can the ProFlex 720 In-Line Flanged Rubber Check Valve be supplied with special flanges or drilling?

Yes, the standard drilling pattern is ANSI 125/150# drilling. Other drilling standards such as: ANSI 250/300#, BS-10, DIN NP-10 and DIN NP-16, JIS-5K and JIS-10K, and square flanges are available upon special request.

14. Can I install a ProFlex In-Line Rubber Check Valve near a residential area?

Yes, one of the unique features of the ProFlex In-Line Rubber Check Valve is the design of the bill section. While the bill will open and allow passage of fluid when head pressure is present, the bill will close and not allow children or animals to crawl inside when there is no head pressure.

15. Can the ProFlex In-Line Rubber Check Valve be used to prevent the common problem often affiliated with manhole flooding?


Yes. The ProFlex In-Line Rubber Check Valve is uniquely designed to fit directly inside a manhole which will prevent reverse flow from flooded manholes.

16. Can I use a ProFlex In-Line Rubber Check Valve in winter conditions?

Yes, as in any installation the ProFlex In-Line Rubber Check Valve will not be hindered by winter or sub-zero installations. If the valve is installed in a running water application the valve will continue to operate satisfactorily, due to the elastomers' unique chemical makeup.

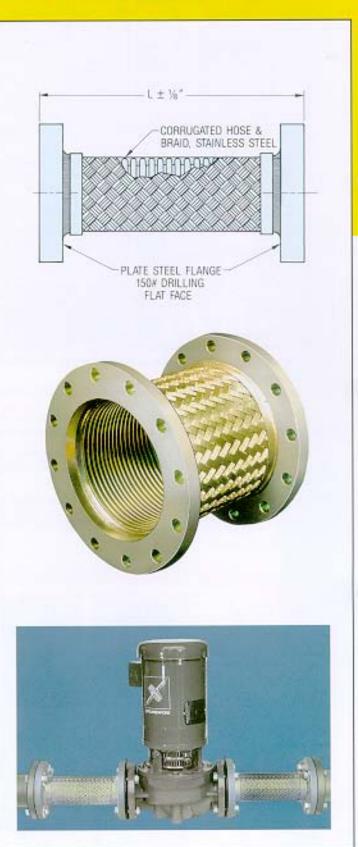
17. What is the maximum temperature that the ProFlex In-Line Rubber Check Valve can handle?

Temperature capabilities can range from -65° F (-54° C) to +250 (+121° C) depending on the specified elastomer.

We Ship World Wide

REPRESENTED BY:

SERIES FF - 6201



Braided Flexible Metal Flanged Connectors (321 Stainless Steel Hose with 304 Stainless Steel Braid and Carbon Steel Plate Flanges).

Expansion		Lateral	Offset		ng Press PSI)	Approx.
Joint Size: ID X Length	Stock	Inter- mittent	Perm- anent	@70°F	@300"F	Unit Ship Weight
2 X 9	S	1/8*	3/8*	455	400	9
2 X 12	S	3/4"	1.	455	400	12
2 1/2 X 9	Ś	1/8*	3/8	345	303	13
2 1/2 X 10	S.	1/8*	3/8*	345	303	13
2 1/2 X 10 1/4	S	3/8*	3/4*	345	303	13
2 1/2 X 12	S	3/4*	1.	345	303	13
3 X 9	S	1/8*	3/8*	289	254	14
3 X 10	5	1/8*	3/8*	289	254	14
3 X 10 5/8	S	3/8*	3/4*	289	254	14
3X14	S	3/4*	†*	289	254	15
4 X 9	5	1/8*	3/8*	300	264	18
4 X 10	S	1/8*	3/8*	300	264	18
4 X 11 3/4	5	3/8*	3/4*	300	264	19
4 X 16	S	3/4*	1*	300	264	20
5X11	S	1/8*	3/8*	220	193	25
5 X 12	5	1/8*	3/8**	220	193	25
5 X 13 5/8	S	3/8*	3/4*	220	193	27
5 X 18	S	3/4*	1.	220	193	30
6X11	S	1/8*	3/8"	200	176	28
6 X 12	S	1/8*	3/8*	200	176	28
6 X 14 1/8	S	3/8*	3/4*	200	176	30
6 X 20	S	3/4*	1.	200	176	34
8 X 12	S	1/8*	3/8*	190	167	52
8 X 13	S	1/8*	3/8"	190	167	52
8 X 15 3/8	S	3/8-	3/4*	190	167	64
8 X 22	S	3/4*	1.	190	167	65
10 X 13	S	1/8*	3/8*	165	145	65
10 X 14	S	1/8*	3/8*	165	145	55
10 X 17 3/4	S	3/8*	3/4*	165	145	68
10 X 24	S	3/4*	1.	165	145	75
12 X 14	5	1/8*	3/8*	125	110	105
12 X 15	S	1/8*	3/8"	125	110	105
12 X18 3/8	S	3/8"	3/4*	125	110	110
12 X 26	S	3/4*	1"	125	110	113
14 X 14	S	1/8*	3/8*	105	92	115
14 X 15	S	1/8*	3/8"	105	92	115
14 X 20	X	3/8"	3/4*	105	92	119
14 X 28	X	3/4"	1=	105	92	126

2. "X" denotes 1-2 week shipment lead time.

website:http://www.procoproducts.com

Call Toll Free: 1-866-711-4673

We Ship World Wide

SERIES GG - 6201

The Expansion Joint People

World Wide

Braided Flexible Metal Grooved Connectors (321Stainless Steel Hose with 304 Stainless Braid and Grooved Ends or Grooved by Flange Ends).

6 ± 34"

WebSales@GoodvearRubberProducts.com

Expansion		Lateral	Offset	Workin (F	Approx.	
Joint Size: ID X Length	Stock	Inter- mittent	Perm- anent	@70°F	@300°F	Unit Ship Weight
2 X 12	S	1/8*	3/8*	450	396	10
2 1/2 X 14	S	1/8*	3/8*	345	303	12
3 X 14	S	1/8*	3/8*	289	254	13
4 X 16	S	1/8*	3/8*	300	254	18
5 X 17	S	1/8*	3/8*	220	193	25
6 X 18	S	1/8*	3/8*	200	176	28
8 X 20	S	1/8*	3/8*	190	167	50
10 X 24	S	1/8*	3/8*	150	132	70
12 X 25	5	1/8*	3/8	125	110	90

DORRUGATED HOSE BRAID, STAINLESS STEEL SCH 40 CARBON STEEL GROWED FND 1 1 1 1 CORRUGATED HOSE & BRAID, STAINLESS STEEL PLATE STEEL FLANS SCH 40 CARBON STEEL GROOVED END 150# DRILLING FLAT FACE Call Toll Free: 1-866-711-4673 We Ship

NOTES: 1. Also comes in Grooved by Flange Design. Please specify series GF-5201

Weight based on Series GF-6201

"S" indicates stocked item.

Comparative Properties Of Typical Proco Products, Inc. Elastom	ical Proco Products, Inc. Elastomers
--	--------------------------------------

ANSI/ASTM D1418-77	CIIR	EPDM	CSM	CR	NBR	NR/IR
Elastomer Common Name	Chlorobutyl	EPDM/EPT	Hypalon	Neoprene	Nitrile/Buna-N	Gum/Natural
ASTM D-2000; SAE J-200	AA-BA	BA-CA-DA	CE	BC-BE	BF-BGBK-CH	AA
Ailitary: MIL STD 417	RS	RS	SC	SC	SB	RN
Proco's Code	B*D*O	E*Q	H	F*N	J*P	G*R
Chemical Name	Chloro-Isobutylene	Ethylene Propylene	Chlor-Sulfonated	Poly-Chlorprene	Butadiene	Polyisoprene
Definition	Isoprene	Polymer	Polyethylene	Tory emorphene	Acro-Nitrile	roryisopiene
Hardness Range: Duro A	40-75	40-90	40-95	40-95	40-95	30-90
Specific Gravity Of Base	0.92	0.86	1.12-1.28	1.23	1.00	0.93
Low Temp Min Service °F	-10 to -60	-20 to -60	-30 to -60	-10 to -50	+30 to -40	-20 to -60
High Temp Max. Service °F	250 to 300	300	275	220	240	185
Abrasion	Good	Good To Excel	Excellent	Excellent	Good	Excellent
Absorption, Water	Very Good	V.Good To Excel	Very Good	Good	Good	Very Good
Acid - Concentrated	Good	Excellent	Very Good	Good	Good	Fair To Good
Acid - Dilute	Excellent	Excellent	Excellent	Excellent	Good	Fair To Good
Adhesion to Fabrics	Good	Good	Good	Excellent	Good	Excellent
Adhesion To Metals	Good	Good To Excel.	Excellent	Excellent	Excellent	Excellent
Chemicals	Excellent	Excellent	Excellent	Fair To Good	Fair To Good	Fair To Good
Cold	Good	Excellent	Good	Good	Fair To Good	Excellent
Dielectric Strength	Excellent	Excellent	V.Good To Excel.	Good	Poor	Excellent
Dynamic Properties	Fair	Good to Excel.	Fair	Fair	Good To Excel.	Excellent
Electrical Insulation	Good To Excel.	Excellent	Good	Fair To Good	Poor	Good To Excel.
Flame	Poor	Poor	Good	Good	Poor	Poor
Heat	Very Good	Excellent	Excellent	Very Good	Good	Good
Heat Aging	Very Good	Excellent	Very Good	Good	Good	Fair
Hydrocarbons-Aliphatic	Poor	Poor	Fair To Good	Fair To Good	Excellent	Poor
Hydrocarbons - Aromatic	Poor	Poor	Fair	Fair	Good	Poor
Hydrocarbons - Oxygenated	Good	Good To V.Good	Poor To Fair	Poor	Poor	Fair To Good
mpermeability	Very Low	Fairly Low	Low To Very Low	Low	Low	Fairly Low
Dil - Animal & Vegetable	Very Good	Good	Good	Good	Very Good	Poor To Good
Oil And Gasoline	Poor	Poor	Good	Good	Excellent	Poor
Oxidation	Excellent	Excellent	Excellent	V.Good To Excel.	Good	Good
Ozone	Excellent	Outstanding	Outstanding	V.Good To Excel.	Fair	Poor To Fair
Radiation	Good	Outstanding	Very Good	Very Good	Very Good	Excellent
Rebound - Cold	Poor	Very Good	Fair To Good	Very Good	Good	Excellent
Rebound - Hot	Very Good	Very Good	Good	Very Good	Good	Excellent
Set, Compression	Fair	Good	Fair	Fair To Good	Good	Good
Solvents, Lacquer	Fair To Good	Poor To Fair	Poor	Poor	Fair	Poor
Steam	Good	Excellent	Fair	Fair	Fair To Good	Fair To Good
Sunlight Aging	Very Good	Outstanding	Outstanding	Very Good	Poor	Poor
Swelling In Oil	Poor	Poor	Good To Excel.	Good	Very Good	Poor
Tear	Good	Fair To Good	Fair	Good	Fair	Good To V.Good
Tensile Strength	Good	Good To Excel.	Fair	Good	Good To Excel.	Excellent
Water Weather	Good Good To Excel.	Excellent Excellent	Fair Excellent	Fair Excellent	Fair To Good Fair	Fair To Good Fair
			Strong Acids and Bases,	Moderate Acids and Chemicals,		Water, Air, Average Concentr
Generally	Greases, Air, Gas, Water,	Oils, Ozone, Many Strong And	0	Ozone, Oils, Fats, and Many	Oils Greases, Hydraulic	tion Acids, Bases, Alcohol's,
Resistant	Many Oxidizing Chemicals,	oxidizing Chemicals, Ketones,		solvents. Oily Abrasive Appli-	Fluids, Chemicals and	Salts, Ketones, Best Abrasion
	And Ozone	Alcohol's	and Hypochlorite Solutions.	cations.	Solvents	Resistance.
Го:		1 100101 5	and rippoentorite solutions.	catolis.	501701115	ixesistance.
Generally	Not For: Oils, Solvents, and	Not For: Mineral Oils, Sol-	Not For: Ketones, Esters, and	Not For: Oxidizing Acids, Esters	Not For: Ozone. Ketones	Not For: Ozone, Strong Acids
	Aromatic Hydrocarbons.		Certain Chlorinated Oxidizing	6		Bases, Oils Solvents, Most Hy
Affected Or		bons.	Acids. Chlorinated, Nitro and	rinated and Nitro Hydrocarbons.		drocarbons
Attacked By:		0015.	Aromatic Hydrocarbons	inaled and i third Hydrocarbolis.	Polar Solvents MEK	
				0 744 /		We Chin
GOODY	FAD	Pall Toll Fr	'ee. I-XH	6-711-4	n/3	We Ship
						World Wie

WebSales@GoodyearRubberProducts.com

World Wide

Pipe Penetration Seals

eals **Call Toll Free: 1-866-711-4673** WebSales@GoodyearRubberProducts.com World Wit World Wide

The Expansion Joint People

PROCO Products, Inc. is the leading manufacturer of rubber, Teflon®, metal, and fabric connectors and expansion joints in North America, and also offers the industry's widest selection available.

Our manufacturing history of expansion joints dates back to the old Uniroyal company, who invented the rubber expansion joint in 1930. PROCO Products, Inc., previously PROtective COatings of Fort Wayne, Indiana, began marketing rubber expansion joints under its shortened name PROCO in 1980. Protective Coatings manufactured rubber expansion joints for Uniroyal under a private label arrangement from 1965 to 1979. In 1984 PROCO Products acquired all assets of Protective Coatings-including tooling, specifications and technologies used in producing rubber expansion joints—and remains the sole property of PROCO Products today.

PROCO Products operates worldwide through a global agent and distribution network providing a wide range of products and services. This allows us to service the customer during all phases of a project regardless of location. PROCO's main goal is to provide quality products and superior service to the demanding global marketplace.

Quality and service will always be PROCO's highest priority.

TEFLON® is a registered Trademark of E.I. Du Pont de Nemours and company and is used under license by Proco Products, Inc.

PROCO Products, Inc. Corporate Headquarters, Stockton, California.

WebSales@GoodyearRubberProducts.com

We Ship

World Wide

Pipe Penetration Seals

PROCO's PEN-SEAL Pipe Penetration Seals have been designed to assist in achieving an efficient, low-cost mechanical seal between any Electrical Conduit, Concrete, Cast Iron, Steel, Copper, or PVC/CPVC pipes passing through Walls, Floors, Tanks, Pipeline Casings, and Vaults. The PEN-SEAL, while being used to seal the gap in electrical conduit lines, will also act as an insulator.

The PEN-SEAL has been designed to provide a gas and watertight seal. All sizes have been tested to withstand a hydrostatic seal up to 20 psig or 40 feet of head pressure in addition to withstanding temperatures up to 250° F.

PEN-SEAL's standard elastomer material is EPDM, which is suitable for temperatures ranging from -40° F to 250° F. EPDM is suitable for most applications in water—above ground and direct burial—and will provide the electrical insulation where cathodic protection is required. Silicone material is also available for higher temperature applications up to 400° F.

Where the PEN-SEAL may come in contact with Hydrocarbons, Oil, Gas, Jet Fuel, and miscellaneous solvents, a Nitrile material is available with temperatures ranging from -40° F to 210° F.

The PEN-SEAL utilizes glass-reinforced plastic for the pressure plates and all hardware is manufactured from Steel Zinc Dichromate. For corrosion resistance, Stainless Steel hardware is available upon request.

Various applications for the PROCO PEN-SEAL:

- Wall Sleeves
- Floor Sleeves
- Interior Piping
- Noise Dampener
- Electrical Contractors
- Pulp & Paper

GOODYEAR

- Precast Concrete
- Mining
- Marine
- Water & WastewaterHVAC
- HVAC
- Power Generation

Call Toll Free: 1-866-711-46

WebSales@GoodyearRubberProducts.

- Valve Pits
- Offshore Oil Platforms
- Telecommunications
- Dual Containment Seal
- Underground Steel Tanks
- Coal Preparation Plants

We Ship World Wide

Sizing Table for Standard Weight Steel, PVC and CPVC Pipe

		S	tandard Weig	ht Steel or P	VC Pipe Sleeve	2 ¹	Cast or Core Bit Drilled Hole ¹				
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs) ²	
0.5	0.840	2.000	2.067	PS-200	4	1.0	2.000	PS-200	4	1.0	
0.75	1.050	2.500	2.469	PS-275	5	1.0	2.500	PS-275	5	1.0	
1	1.315	2.500	2.469	PS-200	5	1.0	3.000	PS-300	4	1.0	
1.25	1.660	3.000	3.068	PS-275	7	1.0	3.000	PS-275	7	1.0	
1.5	1.900	3.500	3.548	PS-300	5	2.5	3.500	PS-300	5	2.5	
2	2.375	4.000	4.026	PS-300	6	2.5	4.000	PS-300	6	2.5	
2.5	2.875	4.000	4.026	PS-200	9	1.0	4.000	PS-200	9	1.0	
3	3.500	5.000	5.047	PS-300	8	2.5	5.000	PS-300	8	2.5	
3.5	4.000	6.000	6.065	PS-325	5	6.0	6.000	PS-325	5	6.0	
4	4.500	6.000	6.065	PS-300	10	2.5	6.000	PS-300	10	2.5	
5	5.563	8.000	7.981	PS-425	6	10.0	8.000	PS-425	6	10.0	
6	6.625	10.000	10.020	PS-475	10	11.0	10.000	PS-475	10	11.0	
8	8.625	12.000	12.000	PS-475	12	11.0	12.000	PS-475	12	11.0	
10	10.750	14.000	13.250	PS-425	10	10.0	14.000	PS-400	10	12.0	
12	12.750	16.000	15.250	PS-425	12	10.0	16.000	PS-400	12	12.0	
14	14.000	18.000	17.250	PS-400	13	12.0	16.000	PS-325	15	6.0	
16	16.000	20.000	19.250	PS-400	15	12.0	18.000	PS-325	17	6.0	
18	18.000	24.000	23.250	PS-500	16	23.0	22.000	PS-575	20	20.0	
20	20.000	24.000	23.250	PS-400	18	12.0	24.000	PS-575	22	20.0	
22	22.000	26.000	25.250	PS-400	20	12.0	26.000	PS-575	24	20.0	
24	24.000	30.000	29.250	PS-500	21	23.0	28.000	PS-575	26	20.0	
26	26.000	30.000	29.250	PS-400	23	12.0	30.000	PS-575	28	20.0	
28	28.000	34.000	33.250	PS-500	24	23.0	32.000	PS-575	30	20.0	
30	30.000	36.000	35.250	PS-500	26	23.0	34.000	PS-575	32	20.0	
32	32.000	38.000	37.250	PS-500	27	23.0	36.000	PS-575	34	20.0	
34	34.000	40.000	39.250	PS-500	29	23.0	38.000	PS-575	36	20.0	
36	36.000	42.000	41.250	PS-500	31	23.0	40.000	PS-575	38	20.0	
42	42.000	48.000	47.250	PS-500	36	23.0	46.000	PS-575	44	20.0	
48	48.000	54.000	53.250	PS-500	41	23.0	52.000	PS-575	50	20.0	

WebSales@GoodyearRubberProducts.com

We Ship World Wide

Notes: 1. Minimum recommended sleeve length or wall thickness is 4" for PEN-SEAL

Model PS-325 and smaller and 6" for Models PS-400 and larger.

2. PEN-SEAL weights are based on a ten (10) link belt.

** PEN-SEAL sets are sold in belts of ten (10) links.

Sizing Table for Copper Tubing

		S	itandard Weig	ht Steel or P	VC Pipe Sleeve		Cast or Core Bit Drilled Hole ¹					
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs) ²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²		
0.5	0.625	2.000	2.067	PS-275	4	1.0	2.000	PS-275	4	1.0		
0.75	0.875	2.000	2.067	PS-200	4	1.0	2.000	PS-200	4	1.0		
1	1.125	2.500	2.469	PS-275	5	1.0	3.000	PS-315	4	3.5		
1.25	1.375	3.000	3.068	PS-300	4	2.5	3.000	PS-300	4	2.5		
1.5	1.625	3.000	3.548	PS-275	7	1.0	3.000	PS-275	7	1.0		
2	2.125	3.500	4.026	PS-275	8	1.0	3.500	PS-275	8	1.0		
2.5	2.625	4.000	4.026	PS-275	10	1.0	4.000	PS-275	10	1.0		
3	3.125	5.000	5.047	PS-325	4	6.0	5.000	PS-325	4	6.0		
4	4.125	6.000	6.065	PS-325	5	6.0	6.000	PS-325	5	6.0		
6	6.125	8.000	7.981	PS-325	7	6.0	8.000	PS-325	7	6.0		
8	8.125	10.000	10.020	PS-325	9	6.0	10.000	PS-325	9	6.0		
10	10.125	14.000	12.000	PS-400	10	12.0	14.000	PS-475	14	11.0		
12	12.125	16.000	15.250	PS-400	12	12.0	16.000	PS-475	16	11.0		

Sizing Table for Electrical Metallic Tubing (EMT)

		S	itandard Weig	ht Steel or P	VC Pipe Sleeve	9 ¹	Cast or Core Bit Drilled Hole ¹					
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs) ²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs) ²		
0.5	0.706	2.000	2.067	PS-275	4	1.0	2.000	PS-275	4	1.0		
0.75	0.922	2.000	2.067	PS-200	4	1.0	2.000	PS-200	4	1.0		
1	1.163	3.000	3.068	PS-315	4	3.5	3.000	PS-315	4	3.5		
1.25	1.510	3.000	3.068	PS-300	4	2.5	3.000	PS-300	4	2.5		
1.5	1.740	3.500	3.548	PS-315	5	3.5	3.500	PS-315	7	3.5		
2	2.197	4.000	4.026	PS-315	6	3.5	4.000	PS-315	8	3.5		
2.5	2.875	4.000	4.026	PS-200	9	1.0	4.000	PS-200	10	1.0		
3	3.500	5.000	5.047	PS-300	8	2.5	5.000	PS-300	4	2.5		
					_				_			
3.5	4.000	6.000	6.065	PS-325	5	6.0	6.000	PS-325	5	6.0		
4	4.500	6.000	6.065	PS-300	10	2.5	6.000	PS-300	7	2.5		

Sizing Table for Intermediate Metal Conduit (IMC)

		2	itandard Weig	ht Steel or P	VC Pipe Sleeve	Cast or Core Bit Drilled Hole ¹					
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs) ²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs) ²	
0.5	0.815	2.000	2.067	PS-200	4	1.0	2.000	PS-200	4	1.0	
0.75	1.029	2.000	2.067	PS-200	4	1.0	2.500	PS-275	6	1.0	
1	1.290	2.500	2.469	PS-275	6	1.0	3.000	PS-300	4	2.5	
1.25	1.638	3.500	3.548	PS-315	5	3.5	3.000	PS-275	7	1.0	
					_				_		
1.5	1.883	3.500	3.548	PS-300	5	2.5	3.500	PS-300	5	2.5	
2	2.360	4.000	4.026	PS-300	6	2.5	4.000	PS-300	6	2.5	
2.5	2.857	4.000	4.026	PS-200	9	1.0	4.000	PS-200	9	1.0	
3	3.476	5.000	5.047	PS-300	8	2.5	5.000	PS-300	8	2.5	
3.5	3.971	6.000	6.065	PS-325	5	6.0	6.000	PS-325	5	6.0	
4	4.466	6.000	6.065	PS-300	10	2.5	6.000	PS-300	10	2.5	

Notes: 1. Minimum recommended sleeve length or wall thickness is 4" for PEN-SEAL Model PS-325 and smaller and 6" for Models PS-400 and larger.

Ca

Toll Free: 1-866-711-4673
Sales@GoodyearRubberProducts.com

We Ship

World Wide

Sizing Table for Rigid Steel Conduit (RSC)

		S	itandard Weig	ht Steel or ۹۱	VC Pipe Sleeve	9 ¹	Cast or Core Bit Drilled Hole ¹				
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²	
0.5	0.840	2.000	2.067	PS-200	4	1.0	2.000	PS-200	4	1.0	
0.75	1.050	2.500	2.469	PS-275	6	1.0	2.500	PS-275	6	1.0	
1	1.315	2.500	2.469	PS-200	5	1.0	3.000	PS-300	4	2.5	
1.25	1.660	3.500	3.548	PS-315	5	3.5	3.000	PS-275	7	1.0	
1.5	1.900	3.500	3.548	PS-300	5	2.5	3.500	PS-200	5	1.0	
2	2.375	4.000	4.026	PS-300	6	2.5	4.000	PS-300	6	2.5	
2.5	2.875	4.000	4.026	PS-200	9	1.0	4.000	PS-200	9	1.0	
3	3.500	5.000	5.047	PS-300	8	2.5	5.000	PS-300	8	2.5	
3.5	4.000	6.000	6.065	PS-325	5	6.0	6.000	PS-325	5	6.0	
4	4.500	6.000	6.065	PS-300	10	2.5	6.000	PS-300	10	2.5	
5	5.563	8.000	7.981	PS-425	6	10.0	8.000	PS-425	6	10.0	
6	6.625	8.000	7.981	PS-300	15	2.5	10.000	PS-475	10	11.0	

Sizing Table for Ductile Iron Pipe (AWWA-Type)

		S	tandard Weig	ht Steel or P	VC Pipe Sleeve	j1	c	ast or Core B	it Drilled Hole	1
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²
2	2.500	4.000	4.026	PS-300	6	2.5	4.000	PS-300	6	2.5
2.25	2.750	5.000	5.047	PS-325	4	6.0	5.000	PS-325	5	6.0
3	3.960	6.000	6.065	PS-325	5	6.0	6.000	PS-325	5	6.0
4	4.800	8.000	7.981	PS-400	5	12.0	8.000	PS-400	5	12.0
6	6.900	10.000	10.020	PS-400	7	12.0	10.000	PS-400	7	12.0
8	9.050	12.000	12.000	PS-400	9	12.0	12.000	PS-400	9	12.0
10	11.100	14.000	13.250	PS-325	12	6.0	14.000	PS-400	10	12.0
12	13.200	16.000	15.250	PS-325	14	6.0	16.000	PS-425	12	10.0
14	15.300	18.000	17.250	PS-325	16	6.0	18.000	PS-425	14	10.0
16	17.400	20.000	19.250	PS-315	39	3.5	20.000	PS-425	16	10.0
18	19.500	24.000	23.250	PS-475	25	11.0	22.000	PS-425	18	10.0
20	21.600	26.000	25.250	PS-475	28	11.0	26.000	PS-525	19	21.0
24	25.800	30.000	29.250	PS-400	23	12.0	30.000	PS-575	28	20.0
30	32.000	38.000	37.250	PS-500	27	23.0	36.000	PS-575	34	20.0
36	38.300	42.000	41.250	PS-400	34	12.0	43.000	PS-525	33	21.0
42	44.500	48.000	47.250	PS-425	39	10.0	49.000	PS-525	38	21.0
48	50.800	54.000	53.250	PS-425	45	10.0	56.000	PS-500	43	23.0

WebSales@GoodyearRubberProducts.com

We Ship

World Wide

Notes: 1. Minimum recommended sleeve length or wall thickness is 4" for PEN-SEAL

Model PS-325 and smaller and 6" for Models PS-400 and larger.

2. PEN-SEAL weights are based on a ten (10) link belt.

** PEN-SEAL sets are sold in belts of ten (10) links.

Sizing Table for Cast Iron Soil Pipe (Extra Heavy)

		S	itandard Weig	ht Steel or P	VC Pipe Sleeve	9 ¹	c	ast or Core B	it Drilled Hole	1
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²
2	2.380	4.000	4.026	PS-300	6	2.5	4.000	PS-300	6	2.5
3	3.500	5.000	5.047	PS-300	8	2.5	5.000	PS-300	8	2.5
4	4.500	6.000	6.065	PS-300	10	2.5	6.000	PS-300	10	2.5
5	5.500	8.000	7.981	PS-425	6	10.0	8.000	PS-425	6	10.0
6	6.500	10.000	10.020	PS-475	10	11.0	10.000	PS-475	10	11.0
8	8.620	12.000	12.000	PS-475	12	11.0	12.000	PS-475	12	11.0
10	10.750	14.000	13.250	PS-425	10	10.0	14.000	PS-400	10	12.0
12	12.750	16.000	15.250	PS-425	12	10.0	16.000	PS-400	12	12.0
15	15.880	20.000	19.250	PS-400	15	12.0	20.000	PS-575	18	20.0

Sizing Table for Cast Iron Soil Pipe (Service Weight)

		S	itandard Weig	ht Steel or P	VC Pipe Sleeve	9 ¹	c	ast or Core B	it Drilled Hole	1
NOMINAL PIPE SIZE (Inches)	ACTUAL PIPE O.D. (Inches)	SLEEVE NOMINAL PIPE SIZE (Inches)	SLEEVE ACTUAL I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²	HOLE I.D. (Inches)	PEN-SEAL PART NUMBER	REQUIRED NUMBER OF LINKS	PEN-SEAL WEIGHT (lbs)²
2	2.300	4.000	1.026	PS-300	6	2.5	4.000	PS-300	6	2.5
3	3.300	5.000	5.047	PS-315	8	3.5	5.000	PS-315	8	3.5
4	4.300	6.000	6.065	PS-315	10	3.5	6.000	PS-315	10	3.5
5	5.300	8.000	10.020	PS-425	6	10.0	8.000	PS-425	6	12.0
6	6.300	10.000	10.020	PS-475	10	11.0	10.000	PS-475	10	12.0
8	8.380	12.000	12.000	PS-475	12	11.0	12.000	PS-475	12	12.0
10	10.500	14.000	13.250	PS-425	10	10.0	14.000	PS-475	14	10.0
12	12.500	16.000	15.250	PS-425	12	10.0	16.000	PS-475	17	10.0
15	15.620	20.000	19.250	PS-475	21	11.0	18.000	PS-425	15	10.0

WebSales@GoodyearRubberProducts.com

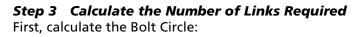
We Ship World Wide

Notes: 1. Minimum recommended sleeve length or wall thickness is 4" for PEN-SEAL

Model PS-325 and smaller and 6" for Models PS-400 and larger.

2. PEN-SEAL weights are based on a ten (10) link belt.

** PEN-SEAL sets are sold in belts of ten (10) links.

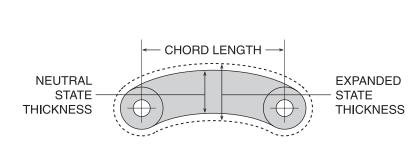

Use the following method if you cannot find the correct pipe size or wall sleeve from the Sizing Charts on pages 4 through 7.

Step 1 Calculate the Annular Space

The Annular Space is the space between the Outside Diameter of the pipe and the Inside Diameter of the Wall Sleeve or opening. This is calculated by using the following formula:

Step 2 Selecting the PEN-SEAL Model

Select the proper PEN-SEAL model from the Dimensional Chart (shown below) by comparing the Annular Space to the Neutral State and Expanded State Thickness. The Annular Space calculated must fall between the Neutral State Thickness and the Expanded State Thickness.


CALCULATING PEN-SEAL SIZES

Then, determine the number of links required by using the following formula. Chord Length is found in the PEN-SEAL Dimensional Chart shown below.

Number of Links = $\frac{Bolt Circle \times 3.14 (\pi)}{Chord Length}$

Finally, the number of links determined must be rounded down to the next whole number.

Please Note: PEN-SEAL sets are sold in belts of ten (10) links.

SEALING RANGE SIZE NEUTRAL STATE THICKNESS (Inches) EXPANDED STATE THICKNESS (Inches) CHORD LENGTH (Inches) PS-200 0.500 0.620 1.125 PS-275 0.620 0.780 0.910 PS-300 0.710 0.880 1.510 PS-315 0.820 1.030 1.470 PS-325 0.940 1.180 3.100 PS-400 1.430 1.810 3.625													
SIZE	STATE THICKNESS	STATE THICKNESS	LENGTH										
PS-200	0.500	0.620	1.125										
PS-275	0.620	0.780	0.910										
PS-300	0.710	0.880	1.510										
PS-315	0.820	1.030	1.470										
PS-400 PS-425	1.430 1.130	1.810 1.450	3.625 3.625										
PS-475	1.620	1.900	2.625										
PS-500 PS-525 PS-575 PS-600	2.370 2.180 1.810 3.200	2.810 2.500 2.350 4.000	3.860 3.860 3.100 4.000										

We Ship

World Wi

Materials Guide

GOODYEA

ТҮРЕ	SEAL MATERIAL	PRESSURE PLATES	BOLTS & NUTS	TEMPERATURE RANGE (°F)	APPLICATIONS*
E	EPDM Black	GLASS REINFORCED PLASTIC	STEEL Zinc Dichromate	-40° to +250°	Suitable for most applications in water, above ground and direct burial. Provides electrical insulation where cathodic protection is required.
ES	EPDM Black	GLASS REINFORCED PLASTIC	STAINLESS STEEL (18-8)	-40° to +250°	Suitable for environments where the corrosion resistance of stainless steel hardware is required.
Р	NITRILE	GLASS REINFORCED PLASTIC	STEEL Zinc Dichromate	-40° to +210°	Resistant to most hydrocarbons, oil, gas, jet fuel, and many solvents.
PS	NITRILE	GLASS REINFORCED PLASTIC	STAINLESS STEEL (18-8)	-40° to +210°	Same as above, but with corrosion resistance of stainless steel hardware.
К	SILICONE	STEEL Zinc Dichromate	STEEL Zinc Dichromate	-40° to +400°	High temperature applications.

Call Toll Free: 1-866-711-467

ales@GoodyearRubberProducts.com

PEN-SEAL

Dimensional Chart

*For more details and complete chemical compatibility contact PROCO.

WALL **SLEEVES**

Standard Weight Steel or PVC Pipe Sleeves

Available in steel or PVC, wall sleeves are positioned in the wall before the concrete is poured. Wall sleeves offer a cleaner installation for every engineered piping system.

SLEEVE NOMINAL	SLEEVE	STANDARD	STANDARD	SLEEVE W	EIGHT (lbs)
PIPE SIZE (Inches)	ACTUAL I.D. (Inches)	SLEEVE LENGTH (Inches)	WATERSTOP HEIGHT (Inches)	STEEL	PVC
2.00	2.07	12.00	2.00	6.00	0.75
2.50	2.47	12.00	2.00	8.00	1.50
3.00	3.07	12.00	2.00	10.00	1.50
3.50	3.55	12.00	2.00	12.00	1.75
4.00	4.03	12.00	2.00	14.00	2.00
5.00	5.05	12.00	2.00	18.00	2.75
6.00	6.07	12.00	2.00	23.00	2.75
8.00	7.98	12.00	2.00	34.00	3.75
10.00	10.02	12.00	2.00	47.00	5.00
12.00	12.00	12.00	2.00	57.00	5.00
14.00	13.25	12.00	2.00	62.00	6.50
16.00	15.25	12.00	2.00	72.00	7.25
18.00	17.25	12.00	2.00	80.00	11.25
20.00	19.25	12.00	2.00	T.B.D.	12.00
22.00	21.25	12.00	2.00	T.B.D.	17.50
24.00	23.25	12.00	2.00	T.B.D.	22.00
26.00	25.25	12.00	2.00	T.B.D.	23.00
28.00	27.25	12.00	2.00	T.B.D.	T.B.D.
30.00	29.25	12.00	2.00	T.B.D.	T.B.D.
32.00	31.25	12.00	2.00	T.B.D.	T.B.D.
34.00	33.25	12.00	2.00	T.B.D.	T.B.D.
36.00	35.25	12.00	2.00	T.B.D.	T.B.D.
38.00	37.25	12.00	2.00	T.B.D.	T.B.D.
40.00	39.25	12.00	2.00	T.B.D.	T.B.D.
42.00	41.25	12.00	2.00	T.B.D.	T.B.D.
44.00	43.25	12.00	2.00	T.B.D.	T.B.D.
46.00	45.25	12.00	2.00	T.B.D.	T.B.D.
48.00	47.25	12.00	2.00	T.B.D.	T.B.D.
50.00	49.25	12.00	2.00	T.B.D.	T.B.D.
52.00	51.25	12.00	2.00	T.B.D.	T.B.D.
54.00	53.25	12.00	2.00	T.B.D.	T.B.D.

Custom lengths and heights available upon request.

WebSales@GoodyearRubberProducts.com

We Ship World Wide

Schedule 40 or Standard Weight Pipe

PEN-SEAL / MODEL PS

IPS

СТ

EMT

IMC

RSC

CI (EH)

CI (SW)

DI

_

=

=

=

=

=

The PROCO PRODUCTS PEN-SEAL forms a mechanical rubber seal between pipes going through walls, floors, vaults, tanks, and pipeline casings and makes a watertight seal between a pipe and a wall hole. It can also be used to seal a gap between an inner pipe and an outer pipe sleeve or pipeline casing. The PEN-SEAL also will seal the gap between the electrical conduit and the outer conduit, or between the electrical conduit and the wall hole it passes through.

> Plastic Pipe API Pipe

Electrical Conduit Any pipe with same O.D.

Any pipe with same O.D.

Electrical Metallic Tubing

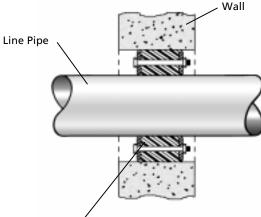
Any pipe with same O.D.

Cast Iron (Service Weight)

Cast Iron (Extra Heavy)

Rigid Steel Conduit

Ductile Iron Pipe Plastic Pipe


Intermediate Metal Conduit

Copper Tubing

Order Form / RFQ

PROCO PRODUCTS PEN-SEAL is designed to form a hydrostatic seal of up to 20 psig and up to 40 feet of head. The PEN-SEAL, in addition to its sealing properties, helps absorb vibrations, shocks, and sound waves. It also insulates the inner pipe from all other outer structures, including outer pipe sleeves, pipeline casings, walls and tanks.

The PEN-SEAL is made from synthetic rubber with heavyduty plastic pressure plates, which are resistant to sunlight and ozone. All bolts and nuts are plated with an anti-corrosive coating. Stainless steel nuts and bolts are also available.

To use as Order Form or Request For Quotation (RFQ), photocopy this page and fax your information to PROCO PRODUCTS, INC. at (209) 943-0242.

PEN-SEAL Wall Penetration Seal by PROCO PRODUCTS, INC.

World Wide

	NOMINAL				e drilled h			PIPE THRO			
QTY.	PIPE SIZE (Inches)	TYPE OF PIPE	PIPE O.D.	HOLE DIA. (Inches)	PEN-SEAL MODEL NUMBER	REQUIRED NUMBER OF LINKS	SLEEVE I.D. (Inches)	PEN-SEAL MODEL NUMBER	REQUIRED NUMBER OF LINKS	ſ	NOTES
											<u>```</u>
CUST	OMER							- [-		XCEO	
PROJ	ECT							PF	IOCO PROD	UCTS, INC.	J
ENGI	NEER								Expansion		
ARCH	IITECT						DESCR	IPTION:	PEN-SE		DEL
	ER NO						DRAWN	I BY:		DATE: 4/02	DRAW PEN-S
OD								44		•	We

GoodvearRu

Easy Installation

1. Properly select the size of the PEN-SEAL required to seal the penetration using the Sizing Charts on pages 4 through 7.

2. Wrap the PEN-SEAL around the pipe and connect the ends.

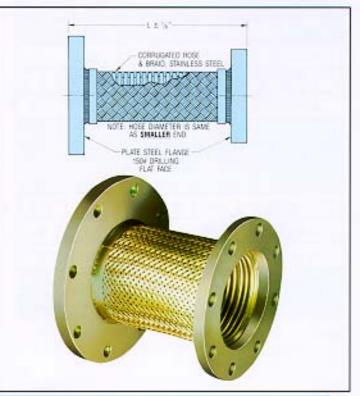
3. Slide the PEN-SEAL into position.

4. Tighten each bolt on each pressure plate about 2–3 turns, going around the pipe (do not cross-tighten bolts) until a proper seal is formed. A socket or offset wrench for 5/16, 1/2, 3/8, 9/16, 3/4, or 1-13/16" bolts will handle all installations.

WebSales@GoodyearRubberProducts.com

We Ship World Wide

EXPRESS #100 00000 Same Day Shipment From Order Placement


SERIES R - 6201

Braided Flexible Metal Reducing Connectors (321 Stainless Hose with 304 Stainless Steel Braid and Carbon Steel Plate Flanges).

Call Toll Free: 1-866-711-467

WebSales@GoodvearRubberProducts.com

Expansion		Lateral	Offset		ng Press PSI)	Approx.
Joint Size: IDXID X Length	Stock	Inter- mittent		@70°F	@300°F	Unit Ship Weight
3 X 2 1/2 X 9	S	1/8*	3/8*	345	303	14
4X2X9	S	1/8*	3/8*	455	400	14
4 X 2 1/2 X 9	S	1/8	3/8*	345	303	14
4X3X9	S	1/8*	3/8*	289	254	16
5X3X9	S	1/8*	3/8*	289	254	22
5X4X9	S	1/8*	3/8*	300	264	25
6X3X9	S	1/8*	3/8*	289	254	23
6X4X9	S	1/8"	3/8*	300	264	30
6X5X11	S	1/8	3/8*	220	193	35
8X4X11	S	1/8	3/8*	300	264	58
8X5X11	S	1/8-	3/8"	220	193	58
8X6X11	S	1/8"	3/8*	200	176	61
10 X 6 X 11	S	1/8*	3/8*	200	176	80
10 X 6 X 11	S	1/8"	3/8*	190	167	85
10 X 8 X 11	S	1/8"	3/8*	190	167	85
12 X 8 X 12	S	1/8"	3/8*	190	167	105
12 X 8 X 14	S	1/8"	3/8*	190	1267	135
12 X 10 X 13	S	1/8"	3/8*	150	132	135
14 X 10 X 13	Х	1/8"	3/8*	120	105	140
14 X 12 X 14	Х	1/8*	3/8"	100	88	145

We Ship

World Wide

NOTES: 1. "S" indicates stocked item.

The PROCO Series RC-221 Rubber Concentric Reducer Expansion Joint, often called a "Taper", serves as a reducing element to transition from one pipe size to another. Concentric in design, each flange-end shares the same common center-line. The PROCO Rubber Reducer is engineered to replace metallic or rubber-lined reducers used to provide unequal diameter connections of: piping and/or operating equipment applications such as: Pumps, Chillers, Cooling Towers, Compressors, Blowers, Fans, Absorption Ma-chines, etc. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series RC-221 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/ Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-up/Surge Forces. The PROCO Series RC-221 is engineered for tough, demanding, industrial and commercial applications, as found in: Air Conditioning-Heating and Ventilating Systems, Chemical-Petro-chemical and Industrial Process Piping Systems, Power Generating Plants, Steel Mills, Marine Services, Pulp/Paper Systems, Water-Wastewater-Sewage and Pollution Control Systems, where metallic reducers used in conjunction with metal hose or expansion joints may have been previously used or specified. Our history in manufacture of expansion joint products dates back to 1930. PROCO Products is a member of the Rubber Expansion Joint Division, Fluid Sealing Association. When a rubber expansion joint is needed to solve a piping system problem, call PROCO.

Traditional design when using a metallic reducer incorporates the use of a flexible element such as an expansion joint or metal hose to absorb the vibrations and movements of the system. The PROCO Series RC-221 Reducer combines the basic shape and dimensions of the metal reducer and the movement-sound reduction-vibration-absorbing features of a flexible element into one unit. Here are some of the many advantages:

Less System Installation Space:

The PROCO RC-221 replaces a metal reducer and a flexible element. Thus less space is required and valves of other equipment can be more conveniently located.

Less Installation Cost:

The PROCO RC-221 costs less then the metal reducer and flexible element that are replaced. Additionally, standard joints (as listed in Table 1 and the "stock" section in Table 2) can be shipped same day as order placement.

Engineered For Your Application: The PROCO Rubber Reducer materials consist of rubber and fabric which are formed and cured in a heated compression mold using an exclusive high-pressure press. The thick outer-cover and interior-tube are of an elastomer especially compounded to satisfy the Chemical-Temperature requirement of your application. Available styles include:

Style RC-221:

Features one Open Arch for maximum movement, and good noise-vibration control. Our most popular style. (See Figure 1)

Style-RCFA-221:

Features one Filled Arch, is generally specified for slurry or abrasive services. Provides noise and vibration control but less movement than Style RC-221. (See Figure 2)

Absorbs Pipe-Wall And Fluid-Borne Noise. The PROCO quiet-operating Series RC-221 is

Ī	For Spe	cific Elas	tomer D			Tempe Ito Elasto										
	Style N	Second ations, See: Type of Elastomer PROCO™ tyle Numbers Type of Elastomer PROCO™ State PROCO™ Maximum ⁴														
	RC-221	RCFA- 221	PROCO™ Material Code	Cover/ Outside	Tube/ Inside	Maximum⁴ Operating Temp. °F	Branding Label Color	F.S.A. Material Class								
ľ	S	S	/BB	Butyl	Butyl	250°	Black	Special II								
	х	Х	/EE	EPDM	EPDM	250°	Red	Special II								
	X	X	/NH	Neoprene	Hypalon ¹	230°	Green	Standard II								
	X7	X 7	/NN ³	Neoprene	Neoprene	230°	Blue	Standard II								
	Х	х	/NP	Neoprene	Nitrile	230°	Yellow	Standard II								
	х	х	/NR	Neoprene	Natural ²	180°	White	Standard I								

NOTES: 1, Hypalon is a trademark of E.I. duPont Nemours & Co. 2. Filled Arch is Tan-Gum, Open Arch is Black-Natural.

3. Material NN meets all requirements of U.S.C.G.

GOODYEAR

4. In applications where pressure is less than 15 PSIG, temperature may be increased. All products are reinforced with synthetic fabric plie

a replacement for "sound transmitting" metallic reducers. Pipe-Wall sound loses energy and is absorbed as the noise carried by the piping enters and exits the rubber section. Fluid-borne noise is absorbed by the volumetric expansion (breathing) of the connector. This action cushions water hammer, and smooths out pumping impulses.

Isolates Vibrations And Motion. Vibration originating from mechanical equipment is ab-sorbed by the PROCO Series RC-221. Rubber connectors should be installed right after and ahead of the equipment generating the vibration, thus isolating the equipment. Most machinery vibrates in a radial direction from the main shaft. For optimum performance the PROCO connector should be installed horizontally and parallel to this shaft. Vertical and perpendicular installations are also acceptable as the PROCO Reducer will accept both axial and lateral movements and vibration. Installations of the Series RC-221 in a system enables isolated equipment to move freely on its vibration mountings. Note: For maximum vibration transmission reduction, the piping section beyond the rubber connector must be anchored or sufficiently rigid.

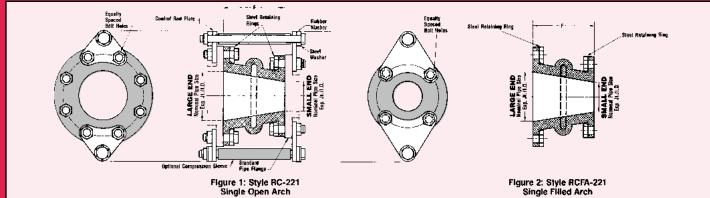
Chemical Or Abrasive Service Capability At Minimal Cost. Expensive, exotic metal or rubber lined reducers for chemical service can be replaced with the PROCO Rubber Reducer. Fabricated with low-cost chemical resistant elastomers such as: Chlorobutyl, EPDM, Hypalon, Neoprene and Nitrile; insures a rubber connector compatible with the fluid being pumped or piped. (See Table 1) Our Neoprene, Natural/Gum and filled arch products should be specified when handling abrasive slurries. Use the PROCO "Chemical to Elastomer Guide" to specify an elastomer for your requirement.

Reduces System Stress And Strain/Compensate For Misalignment. Rigid attachment of piping to critical or mechanical equipment can produce excessive loading. Thermal or mechanically created strain-stress-shock are cushioned and absorbed with the installation of a flexible low "force-to-deflect" PROCO Rubber Reducer. The PROCO Style RC-221 adds a flexible component that is automatically self-correcting for misalignment created by structural movements caused by settling, expansion or ground shifts.

Flange And Retaining Ring Drilling. All PROCO rings are coated to prevent corrosion and dimensionally drilled to ANSI 125/150# standards. In accordance with ANSI, all both hole pairs "straddle" the center line. Hole drilling on center line, other drilling standards or materials such as: 304 or 316 Stainless and Bronze are available on special order.

Less Turbulence Or Material Entrapment. The molded integral flange of the PROCO Rubber Reducer joins the body at a true 90 degree angle. Our product will install snug against the mating pipe flange without voids. Because this flange-body angle is difficult to form, many competitors severely radius this edge angle. The resulting void can create flow turbulence, allow for material entrapment and/or bacteria growth. Avoid these problems by specifying PROCO.

Exclusive Sealing Bead Means A Quick Seal. We have built an "O-Ring" on each flangeface of the Series RC-221. Available only from PROCO, our product seals faster with less torque at installation and less long-term maintenance. For exclusive design features, specify PROCO.


High Pressure With Full Safety Factors. We have assigned conservative pressure ratings to the Series RC-221. However, the ratings meet or exceed the requirements of the Rubber Expansion Joint Division, Fluid Sealing Association, for Series A, B, and C. More importantly, our conservative ratings are fully tested and based on a minimum four-to-one safety factor. With competitive products the safety factor is often calculated or unknown. For pressure protection, specify PROCO.

Visit Our Website: http://www.procoproducts.com email: sales@procoproducts.com

Protecting Piping And Equipment Systems From Stress/Motion

concentric reducer expansion joints

	s	tock	BC-2	21 Open A	Arch Canac	ity: From N	leutral Pos	ition	We	ight/Poun	de la	Sto	nck	BCEA	-221 Filler	i Arch Cap	ability: Fro	m Neutral	Position	W	eight/Poun	ds	Press	sure
Concentric Joint Size	/BB Butyl	/NN Neoprene	Axial Compression	Extension	±Lateral Deflection	±Angular Deflection ¹	Torsional Movement ²	Thr ust Factor ³	Expansion Joint	Retaining Ring Set	Control Rod Set	/BB Butyl	/NN Neoprene	Axial Compression	Extension	±Lateral Deflection	±Angular Deflection ¹	Torsional Movement ²	Factor ³	Expansior Joint	Retaining Ring Set	Control Rod Set	Pressure	Vacuum
I.D. x I.D. x Length			Inches	Inches	Inches	Degree	Degree		Open Arch					Inches	Inches	Inches	Degree	Degree		Filled Arch			PSIG	In. Hg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ទទទ	X X X X	.5 .5 .5	.25 .25 .25 .25	.5 .5 .5	18.4° 15.9° 14.1° 12.5°	3° 3° 3°	12.69 14.32 16.04 17.87	3 3 4 3	3 3 4	6 6 7 7	X X X S	X S X X	.25 .25 .25 .25	.125 .125 .125 .125 .125	3 3 3 3 3 3	9.5° 8.1° 7.2° 6.4°	1.8° 1.8° 1.8° 1.8°	3.14 3.14 4.97 4.97	3 3 4 3	3 3 3 4	6 6 7 7	200 200 200 200	26 26 26 26
3 x 1 x 6* 3 x 1.5 x 6* 3 x 2 x 6* 3 x 2.5 x 6*	X S S S	X X S X	.5 .5 .5 .5	.25 .25 .25 .25	.5 .5 .5 .5	14.0° 12.5° 11.3° 10.3°	3° 3° 3°	16.04 17.87 19.79 21.81	4 4 5	4 4 5	7 7 7 7	X S S X	X X S X	.25 .25 .25 .25	.125 .125 .125 .125 .125	.3 .3 .3 .3	6.4° 6.4° 5.7° 5.2°	1.8° 1.8° 1.8° 1.8°	7.06 7.06 7.06 7.06	4 4 5	4 4 5	7 7 7 7	200 200 200 200	26 26 26 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ទទទទ	S S X X X	.5 .5 .5 .5 .5 .5	.25 .25 .25 .25 .25 .25 .25	.5 .5 .5 .5 .5 .5 .5	9.5° 9.5° 8.7° 8.7° 8.1° 8.1°	အိ အိ အိ အိ အိ	23.93 23.93 26.14 26.14 28.46 28.46	5 5 5 6 6 6	5 5 6 6 6	7 7 8 8 8 8	S X X X S X	S S S X S S S	.25 .25 .25 .25 .25 .25 .25	.125 .125 .125 .125 .125 .125 .125	.3 .3 .3 .3 .3 .3 .3 .3 .3	4.8° 4.8° 4.4° 4.4° 4.1° 4.1°	1.8° 1.8° 1.8° 1.8° 1.8° 1.8°	12.57 12.57 12.57 12.57 12.57 12.57 12.57	5 5 6 6	5 5 6 6 6	7 7 8 8 8	200 200 200 200 200 200 200	26 26 26 26 26 26 26
5 x 3 x 6* 5 x 4 x 6* 5 x 4 x 8*	S S S	X X X	.5 .5 .5	.25 .25 .25	.5 .5 .5	7.1° 6.3° 6.3°	3° 3° 3°	33.38 38.70 38.70	6 8 8	6 7 7	10 10 10	X X X	X S X	.25 .25 .25	.125 .125 .125	,3 ,3 ,3	3.6° 3.2° 3.2°	1.8° 1.8° 1.8°	19.63 19.63 19.63	6 8 9	6 7 7	10 10 10	190 190 190	26 26 26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	X S S S S S S S S	.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	.25 .25 .25 .25 .25 .25 .25 .25 .25 .25	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.1° 6.7° 6.3° 6.3° 5.7° 5.7° 5.7° 5.2° 5.2°	လို လို လို လို လို လို လို လို လို	33.38 35.99 38.70 38.70 38.70 44.41 44.41 44.41 50.51 50.51	8 6 7 9 8 9 11 9 12	6 7 7 7 7 7 7 8 8	12 12 13 13 11 11 11 11 12	x x x s x x s x x s x x s x	S X S X S S S X S X X	.25 .25 .25 .25 .25 .25 .25 .25 .25 .25	.125 .125 .125 .125 .125 .125 .125 .125		3.6° 3.4° 3.2° 3.2° 2.9° 2.9° 2.9° 2.9° 2.6° 2.6°	1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8°	28.27 28.27 28.27 28.27 28.27 28.27 28.27 28.27 28.27 28.27 28.27 28.27 28.27	9 6 7 10 10 8 9 12 9 13	6 7 7 7 7 7 7 8 8	12 12 13 13 11 11 11 11 12	190 190 190 190 190 190 190 190 190	26 26 26 26 26 26 26 26 26 26 26 26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	X S X S S S S S S	.75 .75 .75 .75 .75 .75 .75 .75 .75 .75	.375 .375 .375 .375 .375 .375 .375 .375	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	7.8° 7.1° 7.1° 7.1° 6.6° 6.6° 6.1° 6.1° 6.1°	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	56.64 63.51 63.51 63.51 63.51 70.77 70.77 78.42 78.42 78.42	9 10 11 15 15 10 15 12 14 18	9 9 9 10 10 10 10 10	19 19 20 21 21 18 21 18 21 18 18 20	x s s x x x x s s x	S S X X X X S S S S	.375 .375 .375 .375 .375 .375 .375 .375	.188 .188 .188 .188 .188 .188 .188 .188		3.9° 3.6° 3.6° 3.6° 3.3° 3.3° 3.3° 3.1° 3.1°	1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8°	50.27 50.27 50.27 50.27 50.27 50.27 50.27 50.27 50.27 50.27 50.27	10 10 12 17 17 11 16 12 14 18	9 9 9 10 10 10 10	19 19 20 21 21 18 21 18 18 18 20	190 190 190 190 190 190 190 190 190	26 26 26 26 26 26 26 26 26 26 26 26
10 x 5 x 8* 10 x 6 x 8* 10 x 6 x 12* 10 x 8 x 6* 10 x 8 x 8* 10 x 8 x 12*	\$ \$ \$ \$ \$ \$ \$ \$ \$	X X S X S X	.75 .75 .75 .75 .75 .75 .75	.375 .375 .375 .375 .375 .375 .375	.5 .5 .5 .5 .5 .5 .5	5.7° 5.4° 4.8° 4.8° 4.8°	ຕິ ຕິຕິ ຕິ	86.46 94.90 94.90 112.95 112.95 112.95	19 15 21 14 18 20	11 11 13 13 13	27 26 28 25 25 25 28	X S X S X X	X S S X S X	.375 .375 .375 .375 .375 .375 .375	.188 .188 .188 .188 .188 .188 .188	3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.9° 2.8° 2.8° 2.4° 2.4° 2.4°	1.8° 1.8° 1.8° 1.8° 1.8° 1.8°	78.54 78.54 78.54 78.54 78.54 78.54 78.54	21 15 22 14 20 23	11 11 13 13 13	27 26 28 25 25 25 28	190 190 190 190 190 190	26 26 26 26 26 26 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ទទទទទ	S X S S X S X S X	.75 .75 .75 .75 .75 .75 .75 .75	.375 .375 .375 .375 .375 .375 .375 .375	.5 .5 .5 .5 .5 .5 .5 .5 .5	4.8° 4.3° 4.3° 4.3° 3.9° 3.9°	ຕິ ຕິດ ຕິດ ຕິດ ຕິ	112.95 112.95 132.57 132.57 132.57 132.57 153.77 153.77	19 30 19 24 30 23 35	15 15 17 17 17 18 18	29 31 28 29 30 24 26	s x s s x s x	S X S S X S X S X	.375 .375 .375 .375 .375 .375 .375 .375	.188 .188 .188 .188 .188 .188 .188 .188	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.4° 2.4° 2.2° 2.2° 2.2° 1.9° 1.9°	1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8°	113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10	22 35 19 24 35 24 38	15 15 17 17 18 18	29 31 28 29 30 24 26	190 190 190 190 190 190 190	26 26 26 26 26 26 26 26
14 x 8 x 8* 14 x 10 x 8* 14 x 10 x 10* 14 x 12 x 8*	s s x s	X S X S	.75 .75 .75 .75	.375 .375 .375 .375 .375	.5, 5, 5, 5, 5,	3.9° 3.6° 3.6° 3.3°	2° 2° 2° 2°	177.09 201.46 201.46 227.40	22 30 31 32	18 19 19 23	29 29 30 27	X S X S	X S X X	.375 .375 .375 .375 .375	.188 .188 .188 .188	3 3 3 3 3	1.9° 1.8° 1.8° 1.7°	1.2° 1.2° 1.2° 1.2°	153.94 153.94 153.94 153.94	22 32 25 33	18 19 19 23	29 29 33 27	130 130 130 130	26 26 26 26
16 x 10 x 8* 16 x 10 x 10* 16 x 12 x 8* 16 x 14 x 8*	S X S S	X S X X	.75 .75 .75 .75	.375 .375 .375 .375 .375	.5 .5 .5 .5	3.3° 3.3° 3.1° 2.9°	2° 2° 2° 2°	227.40 227.40 254.92 284.00	31 34 36 38	21 21 25 26	36 39 36 37	S X S S	X X S S	.375 .375 .375 .375 .375	.188 .188 .188 .188	.3 .3 .3 .3	1.7° 1.7° 1.5° 1.4°	1.2° 1.2° 1.2° 1.2°	201.06 201.06 201.06 201.06	31 35 39 42	21 21 25 26	36 39 36 37	110 110 110 110 110	26 26 26 26
18 x 12 x 8 * 18 x 12 x 12 * 18 x 14 x 8 * 18 x 16 x 8 *	S X S S	X X X X	.75 .75 .75 .75	.375 .375 .375 .375 .375	.5 .5 .5 .5	2.9° 2.9° 2.7° 2.5°	1° 1° 1° 1°	284.00 284.00 314.65 346.88	37 41 41 40	26 27 27 29	37 42 37 34	S X X X	X X S S	.375 .375 .375 .375 .375	.188 .188 .188 .188 .188	.3 .3 .3 .3	1.4° 1.4° 1.3° 1.2°	0.6° 0.6° 0.6° 0.6°	254.47 254.47 254.47 254.47	37 41 41 40	26 27 27 29	37 42 37 34	110 110 110 110 110	26 26 26 26

 16
 x
 8*
 S
 X
 .75
 .375
 .5
 2.5°
 1°
 346.88
 40
 29
 34
 X
 S
 .375
 .188
 .3
 1.2°
 0.6°
 254.47
 40
 29
 For Sizes Not Shown: I.D. x I.D. • U-Type, Double or Triple Arch • Contact Factory for Proco Series 100.

TOLL FREE PHONE: (800) 344-3246 FACSIMILE: (209) 943-0242

email: sales@procoproducts.com website: http://www.procoproducts.com

(209) 943-6088

2431 Wigwam Dr. (95205) P.O. Box 590 • Stockton, CA 95201-0590 • USA

NATIONWIDE AND CANADA

INTERNATIONAL

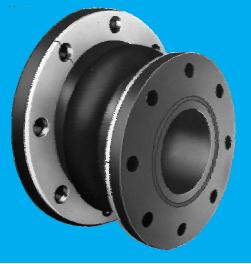
*This length meets length required by ANSI B-16, B-16.24 and B-16.5. Lengths of all sizes meet F.S.A. specifications. NOTES:

- The amount of Angular Movement is based on the maximum allowable Extension Movement from Neutral. Angular Move-ment can be increased, if it is in conjunction with Compres-cient Movement.
- sion Movement. 2. Torsional Movement is expressed when the expansion joint is
- at Neutral.
- To determine End-Thrust: multiply Thrust Factor by operating pressures of system. This total is End Thrust in PS.I.G.
 Pressure rating is based on 170°F Operating Temperature. At
- higher temperatures, the pressure is slightly reduced. Mini-mum Burst Pressures is 4:1.

Distributed by:

Rev. 11/99

We Ship


World Wide

WARNING: Expansion joints may operate in pipelines or equipment carrying fluids and or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect personnel in the event of leakage or splash. Note: Piping must be properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and control units are always recommended to prevent damage in the event of ther anchoring in this system fails. Properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and control units are always recommended to prevent damage in the event of ther anchoring in this system fails. Properly applications shown throughout this data sheet are typical. This information does not constitute a warranty or representation and we assume no legal responsibility or obligation with respect thereto and the use to which such information may be put. Your specific applications should not be undertaken without independent study and evaluation for suitability.

Call Toll Free: 1 -8 WebSales@Goody ar Product S. com

ï

eccentric reducer expansion joints

TM

The PROCO Series RE-221 Rubber Eccentric Reducer Expansion Joint, often called a "Taper", serves as a reducing element to transition from one pipe size to another. Eccentric in design, the rubber expansion joint body tapers on one side transitioning two different flange sizes. Eccentric Reducer Expansion Joints are often located on the suction side of a pump to reduce cavitation. The PROCO Rubber Eccentric Reducer is engineered to replace metallic or rubber-lined reducers used to provide unequal diameter connections of: piping and/or operating equipment applications such as: Pumps, Chillers, Cooling Towers, Compressors, Blowers, Fans, Absorption Machines, etc. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series RE-221 to: (1) Absorb Pipe Movement/Stress, (2) Reduce System Noise, (3) Isolate Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-up/Surge Forces. The PROCO Series RE-221 is engineered for tough, demanding, industrial and commercial applications, as found in: Air Conditioning-Heating and Ventilating Systems, Chemical-Petrochemical and Industrial Process Piping Systems, Power Gener-ating Plants, Steel Mills, Marine Services, Pulp/Paper Systems, Water-Wastewater-Sewage and Pollution Control Systems, where metallic reducers used in conjunction with metal hose or expansion joints may have been previously used or specified. Our history in manufacture of expansion joint products dates back to 1930. PROCO Products is a member of the Rubber Expansion Joint Division, Fluid Sealing Association. When a rubber expansion joint is needed to solve a piping system problem, call PROCO.

2 2 0

SERIES

Traditional design when using a metallic reducer incorporates the use of a flexible element such as an expansion joint or metal hose to absorb the vibrations and movements of the system. The PROCO Series RE-221 Reducer combines the basic shape and dimensions of the metal reducer and the movement-sound reduction vibration-absorbing features of a flexible element into one unit. Here are some of the many advantages:

Less System Installation Space:

The PROCO RE-221 replaces a metal reducer and a flexible element. Thus less space is required and valves of other equipment can be more conveniently located.

Less Installation Cost:

The PROCO RE-221 costs less then the metal reducer and flexible element that are replaced. Additionally, standard joints (as listed in Table 1 and the "stock" section in Table 2) can be shipped same day as order placement.

Engineered For Your Application: The PROCO Eccentric Reducer materials consist of rubber and fabric which are formed and cured in a heated compression mold using an exclusive high-pressure press. The thick outer-cover and interior-tube are of an elastomer especially compounded to satisfy the Chemical-Temperature requirement of your application. Available styles include:

Style RE-221:

Features one Open Arch for maximum movement, and good noise-vibration control. Our most popular style. (See Figure 1)

Style-REFA-221:

Features one Filled Arch, is generally specified for slurry or abrasive services. Provides noise and vibration control but less movement than Style RE-221. (See Figure 2

e 1: Available Styles • Materials • Temperatures • Stock

For Specific Elastomer Recommendations, See: PROCO™ "Chemical to Elastomer Guide"															
Style N	Style Numbers Type of Elastomer PROCOTM														
RE-221	REFA- 221	PROCO™ Material Code	Cover/ Outside	Tube/ Insi de	Maximum⁴ Operating Temp. °F	Branding Label Color	F.S.A. Material Class								
S X X ⁷ X X	S X X X X X	/BB /EE /NH /NN ³ /NP /NR	Butyl EPDM Neoprene Neoprene Neoprene Neoprene	Butyl EPDM Hypalon ¹ Neoprene Nitrile Natural ²	250° 250° 230° 230° 230° 180°	Black Red Green Blue Yellow White	Special II Special II Standard II Standard II Standard II Standard I								

Filed Arch is Tan-Gum Open Arch is Black-Natural. Material NN meets all requirements of U.S.C.G. In applications where pressure is less than 15 PSIG, temperature may be increased.

Absorbs Pipe-Wall And Fluid-Borne Noise. The PROCO quiet-operating Series RE-221 is a replacement for "sound transmitting" metallic reducers. Pipe-Wall sound loses energy and is absorbed as the noise carried by the piping enters and exits the rubber section. Fluid-borne noise is absorbed by the volumetric expansion (breathing) of the connector. This action cushions water hammer, and smooths out pumping impulses.

Isolates Vibrations And Motion. Vibration originating from mechanical equipment is absorbed by the PROCO Series RE-221. Rubber connectors should be installed right after and ahead of the equipment generating the vibration, thus isolating the equipment. Most machinery vibrates in a radial direction from the main shaft. For optimum performance the PROCO connector should be installed horizontally and parallel to this shaft. Vertical and perpendicular installations are also acceptable as the PROCO Reducer will accept both axial and lateral movements and vibration. Installations of the Series RE-221 in a system enables isolated equipment to move freely on its vibration mountings. Note: For maximum vibration transmission reduction, the piping section beyond the rubber connector must be anchored or sufficiently rigid.

Chemical Or Abrasive Service Capability At Minimal Cost. Expensive, exotic metal or rubber lined reducers for chemical service can be replaced with the PROCO Rubber Reducer. Fabricated with low-cost chemical resistant elastomers such as: Chlorobutyl, EPDM, Hypalon, Neoprene and Nitrile; insures a rubber connector compatible with the fluid being pumped or piped. (See Table 1) Our Neoprene, Natural/Gum and filled arch products should be specified when handling abrasive slurries. Use the PROCO "Chemical to Elastomer Guide" to specify an elastomer for your requirement.

Reduces System Stress And Strain/Compensate For Misalignment. Rigid attachment of piping to critical or mechanical equipment can produce excessive loading. Thermal or mechanically created strain-stress-shock are cushioned and absorbed with the installation of a flexible low "force-to-deflect" PROCO Rubber Reducer. The PROCO Style RE-221 adds a flexible component that is automatically self-correcting for misalignment created by structural movements caused by setting, expansion or ground shifts.

Flange And Retaining Ring Drilling. All PROCO rings are coated to prevent corrosion and dimensionally drilled to ANSI 125/150# standards. In accordance with ANSI, all bolt hole pairs are "straddle" the center line. Hole drilling on center line, other drilling standards or materials such as: 304 or 316 Stainless and Bronze are available on special order.

Less Turbulence Or Material Entrapment. The molded integral flange of the PROCO Rubber Reducer joins the body at a true 90 degree angle. Our product will install snug against the mating pipe flange without voids. Because this flange-body angle is difficult to form, many competitors severely radius this edge angle. The resulting void can create flow turbulence, allow for material entrapment and/or bacteria growth. Avoid these problems by specifying PROCO.

Exclusive Sealing Bead Means A Quick Seal. We have built an "O-Ring" on each flange-face of the Series RE-221. Available only from PROCO, our product seals faster with less torque at installation and less long-term maintenance. For exclusive design features, specify PROCO.

High Pressure With Full Safety Factors. We have assigned conservative pressure ratings to the Series RE-221. However, the ratings meet or exceed the requirements of the Rubber Expansion Joint Division, Fluid Sealing Association, for Series A, B, and C. More importantly, our conservative ratings are fully tested and based on a minimum four-toone safety factor. With competitive products the safety factor is often calculated or unknown. For pressure protection, specify PROCO.

WebSales@GoodyearRubberProducts.com

World Wide

eccentric reducer expansion joints

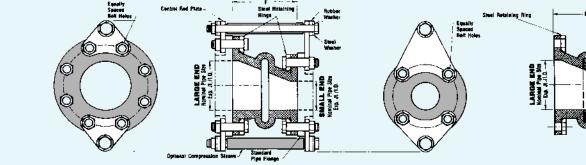


Figure 1: Style RE-221 Single Open Arch

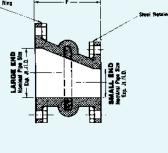


Figure 2: Style REFA-221 Single Filled Arch

Table 2: Sizes	• Mo	vemer	nts • F	Pressu	res •	Weigh	ts																	
	S	tock	RE-2	221 Open A	Arch Capac	ity: From N	eutral Posi	ition	We	ight/Pound	is	Sto	ck	REFA	-221 Filled	Arch Cap	ability: Fror	n Neutral f	Position	We	eight/Poun	ds	Press	sure
Eccentric Joint Size	/BB Butyl	/NN Neoprene	Axial Compression	Axial Extension	±Lateral Deflection	±Angular Deflection ¹	Torsional Movement²	Thrust Factor ^a	Expansion Joint	Retaining Ring Set	Control Rod Set	/BB Butyl	/NN Neoprene	Axial Compressior	Axial Extension	±Lateral Deflection	±Angular Deflection ¹	Torsional Movement ²	Thrust Factor ³	Expansior Joint	Retaining Ring Set	Control Rod Set	Positive Pressure	Vacuum
I.D. x I.D. x Length			Inches	Inches	Inches	Degree	Degree		Open Arch					Inches	Inches	Inches	Degree	Degree		Filled Arch			PSIG	In. Hg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X S S S S S S S S S S S S S S S S S S S	X X X S X S X X X X X X X X X X X X X X	Inches .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Inches 25 25 25 25 25 25 25 25 25 25	Inches .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Degree 18.4° 15.9° 14.0° 12.5° 11.3° 9.5° 9.5° 9.5° 8.7° 8.7° 8.7° 8.1° 6.3° 6.3° 6.3° 6.3° 5.7° 5.7° 5.7° 5.7° 5.7° 5.7° 5.7°	Degree 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3° 3°	12.69 14.32 16.04 17.87 19.79 21.81 23.93 23.93 23.93 26.14 26.14 28.46 38.70 30.70	Arch 3 3 3 4 4 5 5 5 6 6 6 6 6 6 6 6 7 7 8 9 10 8 8 11 11 14 14 14	3 3 3 4 4 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	x x x x s x x x x x x x x x x x x x x x	X S S X S X X S X S X S X S X S X S X S	Inchess 25 25 25 25 25 25 25 25 25 25 25 25 25	Inches .125 .128	Inches 3 3 3 3 3 3 3 3 3 3 3 3 3	Degree 9.5° 8.1° 6.4° 5.7° 5.2° 4.8° 4.8° 4.4° 4.4° 4.1° 3.2° 3.2° 3.2° 3.2° 3.2° 2.9° 2.9° 2.9° 2.9° 2.9° 2.9° 3.6° 3.6° 3.6° 3.1°	Degree 1.8°	3.14 3.14 4.97 7.06 7.06 7.06 7.07 12.57 28.27 28.27 28.27 28.27 28.27 28.27 28.27 50.27	3 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	PSIG 200 190 190 190 190	In. Hg 26 26 26 26 26 26 26 26 26 26 26 26 26
$\begin{array}{cccccccc} 8 & x & 6 & x & 11 \\ \hline 10 & x & 6 & x & 12 \\ 10 & x & 6 & x & 15 \\ 10 & x & 8 & x & 8 \\ 10 & x & 8 & x & 9 \\ 10 & x & 8 & x & 12 \\ 12 & x & 6 & x & 12 \\ 12 & x & 6 & x & 12 \\ 12 & x & 0 & x & 8 \\ 12 & x & 10 & x & 8 \\ 12 & x & 10 & x & 9 \\ 12 & x & 10 & x & 9 \\ 12 & x & 10 & x & 14 \\ 14 & x & 10 & x & 8 \\ 14 & x & 10 & x & 15 \\ 14 & x & 10 & x & 15 \\ 14 & x & 12 & x & 9 \\ 16 & x & 14 & x & 8 \\ 18 & x & 16 & x & 14 \\ 18 & x & 16 & x & 14 \\ 18 & x & 16 & x & 10 \\ 18 & x & 14 & x & 8 \\ 18 & x & 16 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 & x & 10 & x & 10 \\ 18 $	S S X S X S X S X S X S X S X S X S X S	X X X X X X X X X X X X X X X X X X X	.75 .75 .75 .75 .75 .75 .75 .75 .75 .75	.375 .375 .375 .375 .375 .375 .375 .375	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	6.1° 5.4° 5.4° 4.8° 4.8° 4.8° 3.9° 3.9° 3.9° 3.9° 3.9° 3.9° 3.9° 3.9	3° 3° <td< td=""><td>78.42 94.90 94.90 112.95 112.95 112.95 112.95 153.77 153.77 153.77 153.77 201.46 227.40 227.40 227.40 227.40 227.40 244.00 346.88 346.88</td><td>19 20 27 24 24 25 30 36 42 40 41 38 39 43 44</td><td>10 11 13 13 15 18 18 18 18 18 18 19 19 23 23 26 26 29 29</td><td>20 28 31 25 25 31 24 24 24 24 24 24 24 24 24 23 37 37 37 34 35</td><td>x xxsxxxssxx xxxssxx</td><td>X X X X X X X X X X X X X X X X X X X</td><td>.375 .375 .375 .375 .375 .375 .375 .375</td><td>.188 .188 .188 .188 .188 .188 .188 .188</td><td>3</td><td>$\begin{array}{c} 3.1^{\circ} \\ 2.8^{\circ} \\ 2.4^{\circ} \\ 2.4^{\circ} \\ 2.4^{\circ} \\ 2.4^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.4^{\circ} \\ 1.4^{\circ} \\ 1.2^{\circ} \\ 1.2^{\circ} \end{array}$</td><td>1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8°</td><td>50.27 78.54 78.54 78.54 78.54 78.54 113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10 213.94 153.94 153.94 153.94 201.06 201.06 254.47 254.47</td><td>22 26 29 22 23 29 25 25 25 25 25 25 25 25 25 27 34 38 45 40 42 40 41 43 45</td><td>10 11 13 13 15 18 18 18 18 18 18 18 19 19 23 23 26 26 29 29</td><td>20 28 31 25 25 31 24 24 24 24 24 24 24 26 29 33 27 28 37 37 34 35</td><td>190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 130 130 130 110 110 110</td><td>26 26 26 26 26 26 26 26 26 26 26 26 26 2</td></td<>	78.42 94.90 94.90 112.95 112.95 112.95 112.95 153.77 153.77 153.77 153.77 201.46 227.40 227.40 227.40 227.40 227.40 244.00 346.88 346.88	19 20 27 24 24 25 30 36 42 40 41 38 39 43 44	10 11 13 13 15 18 18 18 18 18 18 19 19 23 23 26 26 29 29	20 28 31 25 25 31 24 24 24 24 24 24 24 24 24 23 37 37 37 34 35	x xxsxxxssxx xxxssxx	X X X X X X X X X X X X X X X X X X X	.375 .375 .375 .375 .375 .375 .375 .375	.188 .188 .188 .188 .188 .188 .188 .188	3	$\begin{array}{c} 3.1^{\circ} \\ 2.8^{\circ} \\ 2.4^{\circ} \\ 2.4^{\circ} \\ 2.4^{\circ} \\ 2.4^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.9^{\circ} \\ 1.4^{\circ} \\ 1.4^{\circ} \\ 1.2^{\circ} \\ 1.2^{\circ} \end{array}$	1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8° 1.8°	50.27 78.54 78.54 78.54 78.54 78.54 113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10 113.10 213.94 153.94 153.94 153.94 201.06 201.06 254.47 254.47	22 26 29 22 23 29 25 25 25 25 25 25 25 25 25 27 34 38 45 40 42 40 41 43 45	10 11 13 13 15 18 18 18 18 18 18 18 19 19 23 23 26 26 29 29	20 28 31 25 25 31 24 24 24 24 24 24 24 26 29 33 27 28 37 37 34 35	190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 130 130 130 110 110 110	26 26 26 26 26 26 26 26 26 26 26 26 26 2

For Sizes Not Shown: I.D. x I.D. • U-Type, Double or Triple Arch • Contact Factory for Proco Series 100.

 \bigcirc 0 \bigcirc N **EXPANSION JOINTS**

TOLL FREE PHONE: (800) 344-3246 FACSIMILE: (209) 943-0242 (209) 943-6088

2431 Wigwam Dr. (95205) P.O. Box 590 • Stockton, CA 95201-0590 • USA

NATIONWIDE AND CANADA

NOTES:

 Torsional Movement is expressed when the expansion joint is at Neutral. 3. To determine End-Thrust: multiply Thrust Factor by operating

resure a fystem. This total is End Thrust in SS.I.G.
 Pressure rating is based on 170° F Operating Temperature. At higher temperatures, the pressure is slightly reduced. Mini-

*This length meets length required by ANSI B-16, B-16.24 and

English and a single register of the second s

ment can be increased, if it is in conjunction with Compres-

mum Burst Pressures is 4:1.

sion Movement.

Distributed by:

Rev. 11/99

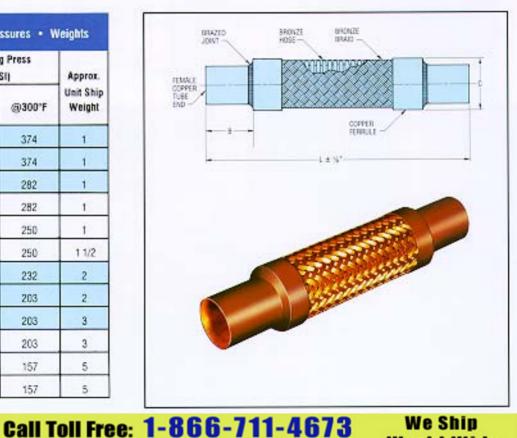
email: sales@procoproducts.com website: http://www.procoproducts.com WARNING: Expansion joints may operate in pipelines or equipment carrying fluids and or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect

INTERNATIONAL

personnel in the event of leakage or splash. Note: Piping must be properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and control units are always recommended to prevent damage in the event of the access of the event of the acces

Call Toll Free: 1 WebSales@Goody ar roduct s om

ï


-8

SERIES SEB - 6201

Braided Flexible Metal Sweat Connectors (Bronze Hose with Bronze Braid and Copper Female Ends).

Expansion		Lateral		ig Press 'SI)	Approz.
Joint Size: ID X Length	Slock	Offset Perm- anent	@70°F	@300°F	Unit Ship Weight
1/2 X 9	S	3/47	450	374	1
1/2 X 10	s	1*	450	374	1
3/4 X 10	s	3/4"	340	282	1
3/4 X 11	s	3/4*	340	282	1
1 X 10	s	1/2*	302	250	1
1 X 12	s	1/2	302	250	1 1/2
1 1/4 X 10	s	3/8*	280	232	2
1 1/4 X 13	s	3/8*	245	203	2
1 1/2 X 12	s	3/8*	245	203	3
1 1/2 X 14	S	3/8*	245	203	3
2 X 14	S	3/8*	190	157	5
2 X 15	х	3/8*	190	157	5

WebSales@GoodvearRubberProducts.com

World Wide

HOTES: 1. "S" indicates stocked item.

molded expansion joints

SERIES

PROCO Series 240 and Series 242 Non-Metallic Expansion Joints are designed for tough demanding industrial applications as found in: Air Conditioning-Heating and Ventilating Systems, Chemical-Petrochemical and Industrial Process Piping Systems, Power Generating Systems, Marine Services, Pulp & Paper Systems, Water-Wastewater-Sewage and Pollution Control Systems. Installed next to mechanical equipment or between the anchor points of a piping system, specify the PROCO Series 240 or 242 to: (1) Absorb Pipe/Movement/Stress, (2) Reduce System Noise, (3) Isolate Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect Against Start-Up/Surge Forces. Our history in the manufacturing of expansion joint products dates back to 1930. When you need an engineered rubber solution to a piping system problem, call PROCO.

240/249

Spherical Shapes-Stronger-More Efficient. Featuring an engineered molded style single or twin sphere designed bellows, the PROCO Series 240 and Series 242 are inherently stronger than the conventional hand-built Spool Type arch. Internal pressure within a sphere is exerted in all directions, distributing forces evenly over a larger area The spherical design "flowing-arch" reduces turbulence, sediment buildup, thrust area and the effects of thrust on the piping system equipment when compared to the "high-arch" design of hand-built standard products.

Greater Movements Are Available with the PROCO Series 240 and Series 242 when compared to the movements of conventional hand-built products. Axial compression, elongation, deflection and angular movements in the system are more readily absorbed by spherical types. These products are more forgiving and can be compressed or extended to install in non-standard openings, caused by equipment shifting or settling (Pre-compressing/extending the expansion joints for installation, may result in reduced pressure, vacuum and movement capabilities of the expansion joints. See Tables 2 and 3.)

Easy Installation With Alignable Metallic Flanges. The floating metallic flanges freely rotate on the bellows, compensating for mating flange misalignment, thus speeding up installation time (see Figures 1, 2, 3 & 4). Gaskets are also not required with the Series 240 or Series 242, provided the expansion joints are mated against a flat face flange as required in the installation instructions.

Less System Strain With Thin Wall Design. Manufactured by high pressure molding of elastomer and high-tensile fabric reinforcement, the Series 240 and Series 242 have a thinner wall section and lighter weight when compared to conventional hand-built products. Lower spring forces are therefore required, reducing piping/flange/equipment stressstrain-damage. PROCO Styles 240-C and 240-A are acceptable for use with plastic piping systems where even lower deflection forces are required.

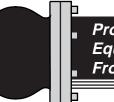
Specifications Met. The PROCO Series 240 and Series 242 are designed to meet or exceed the pressure, movement and dimensional rating of the Spool Type arch as shown in the Rubber Expansion Joint Division, Fluid Sealing Association "Technical Handbook -Sixth Edition" Tables IV & V.

For §	Specific	Elaston			s • Mate	rials Nical To El	astomer (Juido"
240-A	240-C	ations, 540-40, D, E, M	242-A,B,C	PROCO™ Material Code ¹	Cover Elastomer ²	Tube Elastomer	Maximum Operating Temp. °F	Identifying Color Band/Label
	X X X X	X X	X X	/BB /EE /EE-9 /ET-9 ³ /HH	Chlorobutyl EPDM EPDM EPDM Hypalon®	Chlorobutyl EPDM EPDM Teflon® Hypalon®	250° 250° 265° 265° 230°	Black Red Red Red Green
X X	x x x	X X X	X X X	/NH /NJ /NN /NP /NT ³	Neoprene Neoprene Neoprene Neoprene Neoprene	Hypalon® FDA-Nitrile Neoprene Nitrile Teflon®	230° 230° 230° 230° 230°	Green White Blue Yellow

NOTES: Hypalon® is a registered trademark of DuPont Dow Elastomers. Teflon® is a registered trademark of the DuPont Company. 1. All elastomers include nylon reinforcing, except EE-9 which is steel cord.

All materials meet or exceed the Rubber Expansion Joint Division, Fluid Sealing Association-REJ Division requirements for Standard Class I and II. EE-9 also meets Special Class II. For more information see The FSA Technical Handbook, Table 1.

Absorbs Vibration-Noise-Shock. The PROCO quiet operating Series 240 and Series 242 are a replacement for "sound transmitting" metallic expansion joints. Sound loses energy traveling axially through the elastomer bellows. Water hammer pumping impulses and water-borne noises are cushioned and absorbed by the molded lightweight thin-wall structure. Install the Series 240 or Series 242 in a system to enable isolated equipment to move freely on its vibration mountings; or to reduce vibration transmission when the piping section beyond the expansion joint is anchored or sufficiently rigid.


Flange Materials/Drilling. All PROCO Spherical 240 and 242 connectors are furnished complete with plated carbon steel flanges for corrosion protection. Series 240 and 242 Neoprene connectors — 12" and below — are tapped to ANSI 125/150# drilling. All other connectors come with standard drilled holes to the ANSI 125/150# standards (see Table 7 and Figures 3 & 4). Stainless steel flanges and other drilling standards such as: ANSI 250/ 300#, BS-10, DIN NP-10 and DIN NP-16 are also available from stock and are listed on Table 7. JIS-5K and JIS-10K are also available upon request.

Chemical Service Capability At Minimal Cost. Expensive, exotic metal expansion joints for chemical service can be replaced with the PROCO Series 240 or Series 242. Molded with low cost chemical resistant elastomers such as Neoprene, Nitrile, Hypalon®, EPDM and Chlorobutyl insures an expansion joint is compatible with the fluid being pumped or piped. (See Table 1 below). Use the PROCO "Chemical/Rubber Guide" to specify an elastomer recommendation compatible for your requirement.

Wide Service Range With Low Cost. Engineered to operate up to 300 PSIG and 265°F, the PROCO Series 240 and Series 242 can be specified for a wide range of piping requirements. Compared to conventional hand-built Spool Type arch, you will invest less money when specifying the mass-produced, consistent high quality, molded single or twin sphere expansion joints.

Large Inventories Mean Same-Day Shipment.

PROCO maintains the largest inventory of spherical expansion joints in the Americas. Every size listed is in stock in several elastomers and comes with a choice of drilling patterns. Shipment is based on customer need. PROCO can ship same day as order placement. In fact, when it comes to rubber expansion joints, if PROCO doesn't have your requirement...nobody does! Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays ... the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

WebSales@GoodyearRubberProducts.com

Protecting Piping And Equipment Systems From Stress/Motion

We Ship

World Wide

series 240 single sphere expansion joints

Table 2:	Sizes • Mo	ovements •	Pressure	es • Flan	ge Standa	rds • Wei	ghts									
NOMINAL		PROCO	240 Mov	/ement Cap	ability: Fror	n Neutral P	osition ²	Pres	sure ⁴	St	andard Fl	ange Bo	lting Dim	ensions	Weight	in lbs ⁸
PIPE Size I.D.	Neutral Length	Style Number ¹	Axial Compression Inches	Axial Extension Inches	Lateral Deflection Inches	Angular Deflection Degrees	Thrust ³ Factor	Positive ⁵ PSIG	Vacuum ⁶ Inches of Hg	Flange O.D. Inches	Bolt Circle Inches	Number of Holes	Size of Holes Inches	Bolt Hole ⁷ Thread	Exp. Joint & Flanges	Control Unit Set (2 Rod)
1	6.00	240-AV	0.500	0.375	0.500	37	4.43	225	26	4.25	3.13	2 ±	0.625	1/2-13 UNC	3.8	3.3
1.25	3.74 5.00 5.00 6.00	240-D 240-C 240-E 240-AV	0.312 1.063 .500 .500	0.188 1.250 0.375 0.375	0.312 1.188 0.500 0.500	17 45 31 31	6.34	235 225 225 225 225	26 21 26 26	4.63	3.5	4	0.625 0.625 0.625 0.625		4.6 5.0 5.0 5.0	3.3
1.5	3.74 4.00 5.00 5.00 6.00	240-D 240-M 240-C 240-E 240-E 240-AV	0.375 0.375 1.063 0.500 0.500	0.188 0.188 1.250 0.375 0.375	0.312 0.312 1.188 0.500 0.500	14 14 45 27 27	6.49	225 225 235 225 225 225	26 26 18 26 26	5.0	3.88	4	0.625 0.625 0.625 0.625 0.625 0.625	— — — 1/2-13 UNC	5.4 5.5 5.1 6.0 6.1	4.6
2	4.00 4.13 5.00 5.00 6.00 6.00 6.00	240-M 240-D 240-C 240-E 240-A 240-A 240-HW 240-AV	0.375 0.375 1.063 0.375 1.188 0.500 0.500	0.188 0.188 1.250 0.375 1.188 0.375 0.375	0.312 0.312 1.188 0.500 1.188 0.500 0.500	11 11 45 20 45 20 20	7.07	225 225 235 225 235 300 225	26 26 18 26 18 26 26	6.0	4.75	4	0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	— — — — 5/8-11 UNC	8.3 8.5 7.1 8.5 7.1 11.0 12.3	6.3 6.3 6.3 6.3 6.3 7.6 7.6
2.5	4.00 4.53 5.00 5.00 6.00 6.00	240-M 240-D 240-C 240-E 240-A 240-A	0.375 0.500 1.063 0.500 1.188 0.500	1.188 0.250 1.250 0.375 1.188 0.375	0.375 0.375 1.188 0.500 1.188 0.500	8 11 45 17 43 17	11.05	225 225 235 225 235 235 225	26 26 18 26 18 26	7.0	5.5	4	0.750 0.750 0.750 0.750 0.750 0.750 0.750		12.0 12.3 10.6 12.0 12.0 12.3	7.6
3	5.00 5.00 5.14 6.00 6.00 6.00 8.00	240-C 240-E 240-D 240-A 240-HW 240-HW 240-AV 240-AV 240-AV	1.063 0.500 0.500 1.188 0.500 0.500 0.500	1.250 0.375 0.375 1.188 0.375 0.375 0.375 0.375	1.188 0.500 0.500 1.188 0.500 0.500 0.500	40 14 14 38 14 14 14 14	13.36	235 225 225 235 300 225 225	15 26 26 15 26 26 26 26	7.5	6.0	4	0.750 0.750 0.750 0.750 0.750 0.750 0.750	 5/8-11 UNC 5/8-11 UNC	13.3 14.0 14.0 13.8 17.5 14.0 15.0	8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.7
<u>3.5</u> 4	6.00 5.00 5.32 6.00 6.00 6.00 8.00	240-AV 240-C 240-E 240-D 240-A 240-AV 240-AV 240-AV 240-AV	0.500 1.063 0.750 0.750 1.188 0.750 0.750 0.750 0.750	0.375 1.250 0.500 0.500 1.188 0.500 0.500 0.500 0.500	0.500 1.188 0.500 0.500 1.188 0.500 0.500 0.500 0.500	12 32 14 14 30 14 14 14	18.67 22.69	225 235 225 225 235 300 225 225	26 15 26 15 26 26 26 26	9.0	7.0	8	0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	5/8-11 UNC — — — 5/8-11 UNC 5/8-11 UNC	17.6 16.5 17.0 17.1 17.5 26.0 18.3 19.3	7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.8
5	5.00 5.00 6.00 6.69 8.00	240-C 240-E 240-A 240-AV 240-D 240-D 240-AV	1.063 0.750 1.188 0.750 0.750 0.750 0.750	1.250 0.500 1.188 0.500 0.500 0.500	1.188 0.500 1.188 0.500 0.500 0.500 0.500	27 11 25 11 11 11	30.02	235 225 235 225 225 225 225	10 26 10 26 10 26	10.0	8.5	8	0.875 0.875 0.875 0.875 0.875 0.875 0.875		20.3 22.0 21.8 22.8 23.6 25.0	8.3 8.3 8.3 8.3 8.3 8.5 10.8
6	5.00 5.00 6.00 6.00 6.00 7.09 8.00	240-C 240-E 240-A 240-HW 240-AV 240-D 240-D 240-AV	1.063 0.750 1.188 0.750 0.750 0.750 0.750 0.750	1.250 0.500 1.188 0.500 0.500 0.500 0.500	1.188 0.500 1.188 0.500 0.500 0.500 0.500	23 9 21 9 9 9 9 9	41.28	225 225 235 300 225 225 225 225	8 26 10 26 26 26 26 26	11.0	9.5	8	0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875		22.6 26.0 24.0 39.0 26.8 29.0 29.1	10.4 10.4 10.4 10.4 10.4 10.6 10.8
8	5.00 5.00 6.00 6.00 6.00 8.07	240-C 240-E 240-A 240-HW 240-AV 240-D	1.063 0.750 1.188 0.750 0.750 1.000	1.188 0.500 1.188 0.500 0.500 0.563	1.188 0.500 1.188 0.500 0.500 0.875	17 7 16 7 7 8	63.62	235 225 235 300 225 225	8 26 8 26 26 26 26	13.5	11.75	8	0.875 0.875 0.875 0.875 0.875 0.875 0.875		35.5 40.0 38.5 70.0 40.6 41.3	13.4 13.4 13.4 13.4 13.4 13.4 14.0
10	5.00 5.00 8.00 9.00 8.00 9.45 10.00	240-C 240-E 240-A 240-AV 240-AV 240-HW 240-D 240-AV	1.063 1.000 1.188 1.000 1.000 1.000 1.000 1.000	1.188 0.625 1.188 0.625 0.625 0.625 0.625 0.625 0.625	1.188 0.750 1.188 0.750 0.750 0.750 0.750 0.875 0.750	14 7 13 7 7 7 7 7 7	103.87	235 225 235 225 225 275 225 225 225	6 26 26 26 26 26 26 26	16.0	14.25	12	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ \end{array}$		49.3 56.0 53.6 56.6 57.0 56.0 58.5 60.5	21.0 21.0 21.3 21.3 22.0 22.0 22.0 22.0 26.5
12	5.00 5.00 8.00 8.00 9.00 10.24	240-C 240-E 240-A 240-HW 240-AV 240-AV 240-D	1.063 1.000 1.188 1.000 1.000 1.000 1.000	1.250 0.625 1.188 0.625 0.625 0.625 0.625 0.625	1.188 0.750 1.188 0.750 0.750 0.750 0.750 0.875	12 6 11 6 6 6	137.89	235 225 235 275 225 225 225 225	6 26 26 26 26 26 26	19.0	17.0	12	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\end{array}$		73.4 74.0 80.0 100.0 83.0 88.0 89.0	26.5 26.5 27.0 27.0 27.0 27.0 27.0 28.0
14	8.00 8.00 9.00 10.43	240-HW 240-AV 240-M 240-D	1.000 1.000 1.000 1.000	0.625 0.625 0.625 0.625	0.750 0.750 0.750 0.875	5	182.65	200 150 150 150	26 26 26 26	21.0	18.75	12	1.125 1.125 1.125 1.125 1.125		162.0 115.0 117.0 120.0	28.0 28.0 29.0 29.0
16	8.00 8.00 8.00 9.00 10.43	240-C 240-HW 240-AV 240-M 240-D	1.000 1.000 1.000 1.000 1.000	1.063 0.625 0.625 0.625 0.625 0.625	1.188 0.750 0.750 0.750 0.750 0.975	8 4 4 4 4	240.53	145 175 125 125 125 125	6 26 26 26 26 26	23.5	21.25	16	1.125 1.125 1.125 1.125 1.125 1.125	 	136.0 186.0 165.0 168.0 170.0	26.8 26.8 26.8 27.0 27.0
18	8.00 8.00 9.00 10.43	240-HW 240-AV 240-M 240-D	1.000 1.000 1.000 1.000	0.625 0.625 0.625 0.625	0.750 0.750 0.750 0.875	4	298.65	175 125 125 125	26 26 26 26	25.0	22.75	16	1.250 1.250 1.250 1.250	= = =	209.0 168.0 169.0 170.0	31.4 31.4 33.1 33.1
20	8.00 8.00 8.00 9.00 10.43	240-C 240-HW 240-AV 240-M 240-D	1.000 1.000 1.000 1.000 1.000	1.063 0.625 0.625 0.625 0.625 0.625	1.188 0.750 0.750 0.750 0.750 0.875	6 3 3 3 3	363.05	145 175 125 125 125	6 26 26 26 26	27.5	25.00	20	1.250 1.250 1.250 1.250 1.250		154.0 234.0 170.0 173.0 175.0	32.4 32.4 32.4 34.1 34.1
22	10.00	240-AV	1.000	0.625	0.750	3	433.74	115	26	27.5	25.0	20	1.375	—	210.0	34.5
24	8.00 10.00 10.00 10.47	240-C 240-AV 240-HW 240-D	1.000 1.000 1.000 1.000	1.063 0.625 0.625 0.625	1.188 0.750 0.750 0.875	5 3 3 3	510.70	145 110 160 110	6 26 26 26	32.5	29.5	20	1.375 1.375 1.375 1.375		214.0 255.0 297.0 265.0	44.0 45.5 45.5 46.0
26 30	10.00 10.00	240-AV 240-AV	1.000 1.000	0.625	0.750	3	593.96 779.31	110 110	26 26	34.25 38.75	31.75 36.0	24 28	1.375 1.375	_	270.0 295.0	46.5 57.0
Standard PH	ROCO Style 2	40-AV Expan	sion Joints					s and inve	ntoried in	large qua	ntities.			i external load, Prodi		

NOTES: 1. "HW" denotes Heavy Weight Construction. 2. Movements stated are non-concurrent.

3. To determine End Thrust: Multiply Thrust Factor by Operating Pressure of System. This is End Thrust in pounds.

WebSales@GoodyearRubberProducts.com

6. Vacuum rating is based on neutral installed length, without external load. Products should not be

installed "extended" on vacuum applications. 7. Style 240-AV/NN (Neoprene elastomer only) expansion joints 1.0" I.D. – 12.0" I.D. come with tapped

series 242 twin sphere expansion joints

Table 3:	Sizes • Mo	ovements •	Pressure	es • Flang	ge Standa	rds • Wei	ghts									
NOMINAL		PROCO	242 Mo	vement Cap	ability: Fro	n Neutral P	osition ²	Pres	sure ⁴	St	andard Fl	ange Bo	lting Dim	ensions	Weight	in lbs ⁸
PIPE Size I.D.	Neutral Length	Style Number ¹	Axial Compression Inches	Axial Extension Inches	Lateral Deflection Inches	Angular Deflection Degrees	Thrust ³ Factor	Positive ⁵ PSIG	Vacuum ⁶ Inches of Hg	Flange O.D. Inches	Bolt Circle Inches	Number of Holes	Size of Holes Inches	Bolt Hole ⁷ Thread	Exp. Joint & Flanges	Control Unit Set (2 Rod)
1	10.00	242-C	2.000	1.188	1.750	45	4.43	225	26	4.25	3.13	4	0.625	-	5.2	3.6
1.25	7.0 7.0 10.00	242-A 242-HA 242-C	2.000	1.188	1.750	45	6.34	225 300 225	26	4.63	3.5	4	0.625 0.625 0.625	1/2-13 UNC — —	5.3 6.5 6.2	3.5 3.5 3.6
1.5	6.00 6.00 7.00 7.00 10.00	242-B 242-HB 242-A 242-HA 242-HA 242-C	2.000	1.188	1.750	45	6.49	225 300 225 300 225	26	5.0	3.88	4	0.625 0.625 0.625 0.625 0.625	1/2-11 UNC	6.1 7.6 6.8 8.3 7.7	4.6 4.6 4.8 4.8 5.1
2	6.00 6.00 7.00 7.00 10.00	242-B 242-HB 242-A 242-HA 242-C	2.000	1.188	1.750	45	7.07	225 300 225 300 235	26	6.0	4.75	4	0.750 0.750 0.750 0.750 0.750 0.750	 5/8-11 UNC 	9.0 10.5 9.0 10.5 10.2	6.6 6.6 7.0 7.0 7.3
2.5	6.00 6.00 7.00 7.00 10.00	242-B 242-HB 242-A 242-HA 242-HA 242-C	2.000	1.188	1.750	43	11.05	225 300 225 300 225	26	7.0	5.5	4	0.750 0.750 0.750 0.750 0.750	5/8-11 UNC — —	12.9 15.3 13.3 15.8 14.5	7.6 7.6 8.0 8.0 8.4
3	7.00 7.00 9.00 10.00 12.00	242-A 242-HA 242-B 242-C 242-C 242-C	2.000	1.188	1.750	38	13.36	225 300 225 225 300	26	7.5	6.0	4	0.750 0.750 0.750 0.750 0.750	5/8-11 UNC — — — —	14.3 18.2 15.2 15.8 16.0	8.6 8.6 9.0 9.1 9.9
3.5	10.00	242-C	2.000	1.188	1.750	34	18.67	225	26	8.5	7.0	8	0.750	-	20.6	8.1
4	9.00 9.00 10.00 12.00	242-A 242-HA 242-C 242-C	2.000	1.375	1.562	34	22.69	225 300 225 225	26	9.0	7.5	8	0.750 0.750 0.750 0.750	5/8-11 UNC 	20.3 26.4 21.3 22.0	8.0 8.0 8.2 8.2
5	9.00 9.00 10.00 12.00	242-A 242-HA 242-C 242-C	2.000	1.375	1.562	29	30.02	225 300 225 225	26	10.0	8.5	8	0.875 0.875 0.875 0.875 0.875		24.5 31.4 25.5 26.0	8.3 8.3 9.1 9.1
6	9.00 9.00 10.00 12.00 14.00	242-A 242-HA 242-C 242-C 242-C 242-C	2.000	1.375	1.562	25	41.28	225 300 225 225 225 225	26	11.0	9.5	8	0.875 0.875 0.875 0.875 0.875	3/4-10 UNC — — — —	29.5 38.6 30.5 31.0 32.0	11.7 11.7 11.9 12.0 12.0
8	9.00 9.00 10.00 12.00 13.00 13.00 14.00	242-B 242-HB 242-C 242-C 242-A 242-HA 242-HA 242-C	2.375	1.375	1.375	19	63.62	225 300 225 225 225 300 225	26	13.5	11.75	8	0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875		42.3 55.4 43.4 44.0 43.8 57.5 46.0	14.5 14.5 15.0 15.2 15.4 15.4 16.0
10	12.00 12.00 13.00 13.00 14.00	242-B 242-HB 242-A 242-HA 242-HA 242-C	2.375	1.375	1.375	15	103.87	225 275 225 275 275 225	26	16.0	14.25	12	1.000 1.000 1.000 1.000 1.000	 7/8-9 UNC 	64.1 86.5 65.5 88.4 66.7	23.5 23.5 24.5 24.5 24.5 24.5
12	12.00 12.00 13.00 13.00 14.00	242-B 242-HB 242-A 242-HA 242-HA 242-C	2.375	1.375	1.375	13	137.89	225 275 225 275 275 225	26	19.0	17.00	12	1.000 1.000 1.000 1.000 1.000	7/8-9 UNC	94.0 110.0 95.0 110.0 99.1	30.0 30.0 31.0 31.0 31.0
14	12.00 13.75 13.75	242-C 242-A 242-HA	1.750	1.118	1.118	9	182.65	150 150 200	26	19.0	18.75	12	1.125 1.125 1.125		110.0 112.0 144.0	30.5 32.0 32.0
16	12.00 12.00 13.75 13.75	242-C 242-HC 242-A 242-HA	1.750	1.118	1.118	8	240.53	125 175 125 175	26	23.5	21.25	16	1.125 1.125 1.125 1.125 1.125		124.0 160.0 132.0 170.2	28.8 28.8 30.8 30.8
18	12.00 13.75 13.75	242-C 242-A 242-HA	1.750	1.118	1.118	7	298.65	125 125 175	26	25.0	22.75	16	1.250 1.250 1.250		138.0 146.0 181.2	35.1 36.1 36.1
20	12.00 13.75 13.75	242-C 242-A 242-HA	1.750	1.118	1.118	7	363.05	125 125 175	26	27.5	25.0	20	1.250 1.250 1.250		172.0 182.0 182.0	35.0 35.5 35.5
22	12.00	242-C	1.750	1.118	1.118	6	433.74	115	26	29.5	27.25	20	1.375	—	181.0	35.5
24	12.00 13.75 13.75	242-C 242-A 242-HA	1.750	1.118	1.118	5	510.70	110 110 160	26	32.5	29.5	20	1.375		190.0 220.0 266.2	47.0 48.0 48.0
26	12.00 12.00	242-C 242-C	1.750 1.750	1.118	1.118	5	593.96 779.31	110 110	26 26	34.25 38.75	31.75 36.0	24 28	1.375 1.375	_	243.0 270.0	52.0 62.0
30									20	30.75	30.0	20	1.3/3	_	210.0	02.0

Standard PROCO Style 242-A Expansion Joints shown in Bold Type are considered Standards

and inventoried in large quantities.

- NOTES: 1. "HA", "HB", and "HC" denote Heavy Weight Construction.
 - Movements stated are non-concurrent.
 To determine End Thrust: Multiply Thrust Factor by Operating Pressure of System.
 - This is End Thrust in pounds.
 - Pressure rating is based on 170°F operating temperature. The pressure rating is reduced slightly at higher temperatures.
 - Pressures shown are maximum "operating pressure." Test pressure is 1.5 times "operating pressure." Burst pressure is approximately 4 times "operating pressure."

 - Vacuum rating is based on neutral installed length, without external load. Products should not be installed "extended" on vacuum applications.
 - 7. Style 240-AV/NN (Neoprene elastomer only) expansion joints 1.25" I.D. 12.0" I.D. come with
 - tapped holes in lieu of drilled holes.
 - 8. All expansion joints are furnished complete with flanges. Control units are required on applications where movements could exceed rated capabilities.

Installation Note:

Install at the neutral length dimension as shown in Tables 2 & 3. Make sure the mating flanges are FLAT-FACE TYPE. When attaching beaded end flanged expansion joints to raised face flanges, the use of ring gaskets are required to prevent metal flange faces from cutting rubber bead during installation. Care must be taken when pushing the joint into the breech between the mating flanges so as not to roll the leading edge of the joint out of its flange groove.

Precompression Note:

Joint must be precompressed approximately 1/8" to 3/16" in order to obtain a correct installed face-to-face dimension.

control units

Table 4: Cont	rol Units/Unanc	hored												
	be installed when pro ge • operating) excee													
Pipe Size Series 240 P.S.I.G. Series 242 P.S.I.G.														
1" thru 4"	180	135												
5" thru 10"	135	135												
12" thru 14"	90	90												
16" thru 24"	45	45												
26" thru 30"	35	35												

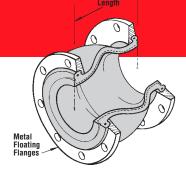


Figure 1. Style 240 **Single Sphere Connector**

Table 5	i: Contro	ol Units				
od 1 (in)	Control Rod Plate Thickness (in)	² (in)	(in)		um Surge e of Systen	
0.0	ol Rc	eter	inal Size	Number	of Rods Re	equired:
Control Rod Plate 0.D. ¹ (Contr Thick	Rod Diameter ² (in)	Nominal Pipe Siz	2	3	4
8.375	0.375	0.625	1	949	_	_
8.750	0.375	0.625	1.25	830	-	-
9.125	0.375	0.625	1.5	510	-	-
10.125	0.375	0.625	2	661		
11.125	0.375	1.000	2.5	529	_	_
11.625	0.375	1.000	3	441	-	-
12.625	0.375	1.000	3.5	365	547	729
13.125	0.375	1.000	4	311	467	622
14.125	0.500	1.000	5	235	353	470
15.125	0.500	1.000	6	186	278	371
19.125	0.500	1.000	8	163	244	326
21.625	0.750	1.000	10	163	244	325
24.625	0.750	1.000	12	160	240	320
26.625	0.750	1.000	14	112	167	223
30.125	0.750	1.250	16	113	170	227
31.625	0.750	1.250	18	94	141	187
34.125	0.750	1.250	20	79	118	158
36.125	1.000	1.250	22	85	128	171
38.625	1.000	1.250	24	74	110	147
40.825	1.000	1.250	26	62	93	124
44.125	1.250	1.500	28	65	98	130
46.375	1.250	1.500	30	70	105	141
NOTES:	1. Control R	od Plate O.D		I dimension		a

maximum O.D. PROCO would supply. (See Figures 3 & 4) 2. Control Rod diameter is based on a maximum diameter PROCO would use to design a Control Rod.

3. Rod pressure ratings are based on metal conforming to F.S.A. standards and dimensions.

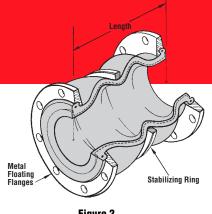
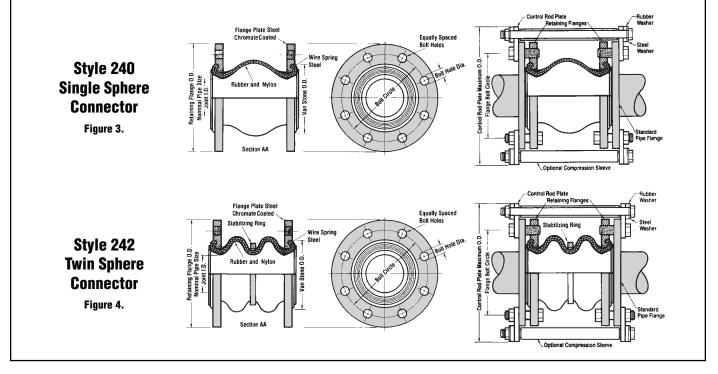



Figure 2. Style 242 **Twin Sphere Connector**

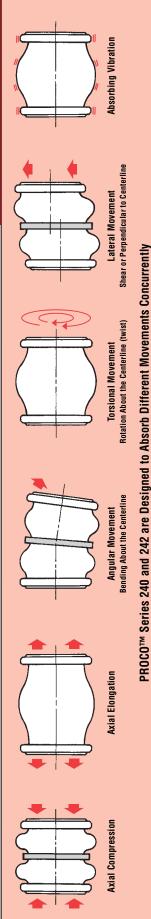
WebSales@GoodyearRubb

Control Rod/Unit Applications. Control unit assemblies are designed to absorb static pressure thrust developed at the expansion joint. When used in this manner, control unit assemblies are an additional safety factor, minimizing possible failure of the expansion joint or damage to equipment. (See Tables 4 & 5).

- 1. Anchored Systems: Control unit assemblies are not required in piping systems that are anchored on both sides of the expansion joint, provided piping movements are within the rated movements as shown in Tables 2 & 3.
- 2. Unanchored Systems: Control unit assemblies are always required in unanchored systems. Additionally, control unit assemblies must be used when maximum pressure exceeds the limits shown in Table 4 & 5, or

GOODYEAR

3. Spring-Mounted Equipment: Control unit assemblies are always recommended for spring-mounted equipment. Additionally, control unit assemblies must be used when maximum pressure exceeds the limits shown in Tables 4 & 5, or the movement exceeds the rated movements as shown in Tables 2 & 3.


Special Applications. Certain Style 240 (Single Sphere) and 242 (Twin Sphere) expansion joints are available in High-Pressure Designs. For specific pressures, see Table 6. Style designations are listed as 240-HW (sizes stocked in Table 2) and 242-HA, 242-HB & 242-HC (sizes stocked in Table 3.) The High-Pressure Design is recommended when the connector is to be installed into ANSI 250/ Call Toll Free: 1-866-711-467

We Ship

World Wide

NP16	əzi2 əloH	0.55 14.0	0.71 18.0	0.71 18.0	0.71 18.0	0.71 18.0	0.71 18.0	11	0.71 18.0	0.71 18.0	0.87 22.0	0.87 22.0	1.02 26.0	1.02 26.0	1.02 26.0	1.18 30.0	1.18 30.0	1.30 33.0	1.30 33.0	1.42 36.0	1.42 36.0	1.42
s 374 Table 8-273	to .oV səloH	44	44	44	44	44	ϰ	11	∞ ∞	ϰ	8 8	12 12	12 12	12	16 16	16 16	20 20	20 20	20 20	20 20	24 24	24
Metric Series Conforms to I.S.O. 2084-1974 Table NP16 Holes to I.S.O. /R-273	Bolt Circle	3.35 85.0	3.94 100.0	4.33 110.0	4.92 125.0	5.71 145.0	6.30 160.0	11	7.09 180.0	8.27 210.0	9.45 240.0	11.61 295.0	13.98 355.0	16.14 410.0	18.50 470.0	20.67 525.0	23.03 585.0	25.59 650.0	27.95 710.0	30.31 770.0	31.10 790.0	35.43
M ms to 1.S. Holes 1	Flange 0.D.	4.53 115.0	5.51 140.0	5.91 150.0	6.50 165.0	7.28 185.0	7.87 200.0	11	8.66 220.0	9.84 250.0	11.22 285.0	13.39 340.0	15.94 405.0	18.11 460.0	20.47 520.0	22.83 580.0	25.20 640.0	28.15 715.0	30.51 775.0	33.07 840.0	33.86 860.0	38.19
Confor	Flange Thickness	0.63 16.0	0.63 16.0	0.63 16.0	0.71 18.0	0.71 18.0	0.79 20.0	11	0.79 20.0	0.87 22.0	0.87 22.0	0.87 22.0	1.02 26.0	1.02 26.0	1.10 28.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	1.26 32.0	1.26
NP10	əzi2 əloH	0.55 14.0	0.71 18.0	0.71 18.0	0.71 18.0	0.71 18.0	0.71 18.0		0.71 18.0	0.71 18.0	0.87 22.0	0.87 22.0	0.87 22.0	0.87 22.0	0.87 22.0	1.02 26.0	1.02 26.0	1.02 26.0	1.18 30.0	1.18 30.0	1.18 30.0	1.30
s 974 Table ?-273	to .oV 2910H	44	44	44	44	44	∞∞	11	∞ ∞	∞ ∞	8 8	88	12 12	12	16 16	16 16	20 20	20 20	20 20	20 20	24 24	24
Metric Series Contorms to I.S.O. 2084-1974 Table NP10 Holes to I.S.O. /A-273	Bolt Circle	3.35 85.0	3.94 85.0	4.33 110.0	4.92 125.0	5.71 145.0	6.3 160.0	11	7.09 180.0	8.27 210.0	9.45 240.0	11.61 295.0	13.78 350.0	15.75 400.0	18.11 460.0	20.28 515.0	22.24 565.0	24.41 620.0	26.57 675.0	28.54 725.0	30.71 780.0	35.43
M ms to 1.S. Holes	Flange 0.D.	4.53 115.0	5.51 140.0	5.91 150.0	6.50 165.0	7.25 185.0	7.87 200.0		8.66 220.0	9.84 250.0	11.22 285.0	13.39 340.0	15.55 395.0	17.52 445.0	19.88 505.0	22.24 565.0	24.21 615.0	26.38 670.0	28.74 730.0	30.71 780.0	32.87 835.0	37.99 065.0
Confor	Flange Thickness	0.63 16.0	0.63 16.0	0.63 16.0	0.71 18.0	0.71 18.0	0.79 20.0	11	0.79 20.0	0.87 22.0	0.87 22.0	0.87 22.0	1.02 26.0	1.02 26.0	1.10 28.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	1.26 32.0	1.26
	əzi2 əloH	0.62 15.9	0.62 15.9	0.62 15.9	0.75 19.1	0.75 19.1	0.75 19.1	0.75 19.1	0.75 19.1	0.75 19.1	0.88 22.2	0.88 22.2	0.88 22.2	1.00 25.4	1.00 25.4	1.00 25.4	1.00 25.4	1.00 25.4	1.13 28.6	1.25 31.8	11	1.38
0:1962 Table E	to. of səloH	44	44	44	44	44	44	∞ ∞	∞ ∞	∞∞	8 8	88	12 12	12	12 12	12 12	16 16	16 16	16 16	16 16	11	20
British Standard 10:1962 Conforms to BS 10 Table E	Bolt Circle	3.25 82.6	3.44 87.3	3.88 98.4	4.5 114.3	5.0 127.0	5.75 146.1	6.5 165.1	7.0 177.8	8.25 209.6	9.25 235.0	11.5 292.1	14.0 355.6	16.0 406.4	18.5 469.9	20.5 520.7	23.0 584.2	25.25 641.4	27.5 698.5	29.75 755.7	11	36.5
British S Conform	Flange 0.D.	4.5 114.0	4.75 121.0	5.25 133.0	6.0 152.01	6.5 165.0	7.25 184.0	8.0 203.0	8.5 216.0	10.0 254.0	11.0 279.0	13.25 337.0	116.0 406.0	18.0 457.0	20.75 527.0	22.75 578.0	25.25 641.0	27.75 705.0	30.0 762.0	32.5 826.0	11	39.25
	Flange Thickness	0.59 15.0	0.59 15.0	0.59 15.0	0.63 16.0	0.71 18.0	0.71 18.0	0.71 18.0	0.71 18.0	0.79 20.0	0.87 22.2	0.87 22.2	0.95 24.0	0.95 24.0	1.02 26.0	1.10 28.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	11	1.26
5.	əzi2 əloH	0.75 19.1	0.75 19.1	0.88 22.2	0.75 19.1	0.88 22.2	0.88 22.2	0.88 22.2	0.88 22.2	0.88 22.2	0.88 22.2	1.00 25.4	1.13 28.6	1.25 31.8	1.25 31.8	1.38 34.9	1.38 34.9	1.38 34.9	1.38 34.9	1.62 41.3	1.75 44.5	2.00
300# 1 and B16	to. of 2910H	44	44	44	∞ ∞	∞ ∞	∞ ∞	∞ ∞	8 8	œ ∞	12 12	12 12	16 16	16 16	20 20	20 20	24 24	24 24	24 24	24 24	28 28	28
rican 250/ ANSI B16	golt Sircle	3.5 88.9	3.88 98.4	4.50 114.3	5.00 127.0	5.88 149.2	6.62 168.2	7.25 184.2	7.88 200.0	9.25 235.0	10.62 269.9	13.0 330.2	15.25 387.4	17.75 450.9	20.25 514.4	22.5 571.5	24.75 628.7	27.0 685.8	29.5 743.0	32.0 812.8	34.5 876.0	39.25
American 250/300# Conforms to ANSI B16.1 and B16.5	Flange 0.D.	4.88 124.0	5.25 133.0	6.12 156.0	6.50 165.0	7.5 191.0	8.25 210.0	9.0 229.0	10.0 254.0	11.0 279.0	12.5 318.0	15.0 381.0	17.5 445.0	20.5 521.0	23.0 584.0	25.5 648.0	28.0 711.0	30.5 775.0	33.0 838.0	36.0 914.0	38.25 972.0	43.0
ö	Flange Thickness	0.63 16.0	0.63 16.0	0.63 16.0	0.71 18.0	0.71 18.0	0.79 20.0	0.79 20.0	0.79 20.0	0.87 22.0	0.87 22.2	0.95 24.0	1.02 26.0	1.02 26.0	1.10 28.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.0	1.26 32.0	1.26
	Threaded Hole Size	1/2 - 13 UNC	1/2 - 13 UNC	1/2 - 13 UNC	5/8 - 11 UNC	3/4 - 10 UNC	3/4 - 10 UNC	3/4 - 10 UNC	7/8 - 9 UNC	7/8 - 9 UNC	1 - 8 UNC	1 - 8 UNC	1 1/8 - 7 UNC	1 1/8 - 7 UNC	1 1/4 - 7 UNC							
)# ind B16.5	Drilled Hole Size	0.62 15.9	0.62 15.9	0.62 15.9	0.75 19.1	0.75 19.1	0.75 19.1	0.75 19.1	0.75 19.1	0.88 22.2	0.88 22.2	0.88 22.2	1.00 25.4	1.00 25.4	1.13 28.6	1.13 28.6	1.25 31.8	1.25 31.8	1.38 34.9	1.38 34.9	1.38 34.9	1.38
an 125/150 ISI B16.1 a	to .oV 2910H	44	44	44	44	44	44	∞ ∞	∞ ∞	∞ ∞	88	88	12 12	12 12	12 12	16 16	16 16	20 20	20 20	88	24 24	28
American 125/150# Conforms to ANSI B16.1 and B16.5	Bolt Circle	3.13 79.4	3.5 88.9	3.88 98.4	4.75 120.7	5.5 139.7	6.0 152.4	7.0 177.8	7.5 190.5	8.5 215.9	9.5 241.3	11.75 298.5	14.25 362.0	17.0 431.8	18.75 476.3	21.25 539.8	22.75 577.9	25.0 635.0	27.25 692.2	29.5 749.3	31.75 806.5	36.0
Conf	Flange 0.D.	4.25 108.0	4.63 118.0	5.0 127.0	6.0 152.0	7.0 178.0	7.5 191.0	8.5 216.0	9.0 229.0	10.0 254.0	11.0 279.0	13.5 343.0	16.0 406.0	19.0 483.0	21.0 533.0	23.5 597.0	25.0 635.0	27.5 699.0	29.5 749.0	32.06 813.0	34.25 870.0	38.75
NOMINAL Co	Flange Thickness	0.55 14.0	0.55 14.0	0.55 14.0	0.63 16.0	0.71 18.0	0.71 18.0	0.71 18.0	0.71 18.0	0.79 20.0	0.87 22.0	0.87 22.0	0.95 24.0	0.95 24.0	1.02 26.0	1.10 28.0	1.18 30.0	1.18 30.0	1.18 30.0	1.18 30.00	1.26 32.0	1.26
NOMINAL	SIZE Inch/ mm	1 25	1.25 32	1.5 40	2 50	2.5 65	3 80	3.5 90	4 100	5 125	6 150	8 200						20 500	22 550	24 600	26 650	30 750

We Ship World Wide

The largest inventory in North America!

PROCO[™] **PRODUCTS, INC.**

PROCO has a vast array of Style/Elastomer configurations. We have an inventory to 72" diameter and can ship your requirement the same business day. With an average of over 20 years experience in the expansion joint industry, our sales staff can answer any of your questions and help to solve your problems.

Demand the best — insist on **PROCO**".

WebSales@GoodyearRubberProducts.

- Same-day shipping
- Knowledgeable sales staff that has an average of 20 years experience with expansion joints

Same Day Shipment From Order Placement

- Daily UPS[®] pick-up
- Preselected freight carriers to minimize "interline transfer"
- Emergency service for nights, weekends, and even holidays
- **Complete expansion joint** product line
- Largest inventory in North America with warehouses in Stockton, CA Houston, TX Atlanta, GA

We Ship world Wide

DISTRIBUTED BY:

GOODYEAR RUBBER PRODUCTS INC Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

We Ship World Wide

伯

The Expansion Joint People

PROCO Products, Inc. is the leading manufacturer of rubber, TEFLON[®], metal, and fabric connectors and expansion joints in North America, and also offers the industry's widest selection available.

Our manufacturing history of expansion joints dates back to the old Uniroyal company, who invented the rubber expansion joint in 1930. PROCO Products, Inc., previously **PRO**tective **CO**atings of Fort Wayne, Indiana, began marketing rubber expansion joints under its shortened name PROCO in 1980. Protective Coatings manufactured rubber expansion joints for Uniroyal under a private label arrangement from 1965 to 1979. In 1984 PROCO Products acquired all assets of Protective Coatings—including tooling, specifications and technologies used in producing rubber expansion joints—and remains the sole property of PROCO Products today.

PROCO Products operates worldwide through a global agent and distribution network providing a wide range of products and services. This allows us to service the customer during all phases of a project regardless of location. PROCO's main goal is to provide quality products and superior service to the demanding global marketplace.

Quality and service will always be PROCO's highest priority.

TEFLON® is a registered Trademark of E.I. Du Pont de Nemours and company and is used under license by Proco Products, Inc.

PROCO Products, Inc. Corporate Headquarters, Stockton, California.

PROCO PRODUCTS, Inc.

2431 North Wigwam Drive Stockton, California 95205

Post Office Box 590 Stockton, California 95201-0590 USA

Toll Free: 800.344.3246 USA/Canada International: 209.943.6088 Fax: 209.943.0242 E-mail: sales@procoproducts.com Web Site: www.procoproducts.com

> We Ship World Wide

The Expansion Joint People Can Be Reached At Any Time!

24-Hour Service From Our Dedicated Staff!

Dan Larson Steve Bowman Tony Diaz John Duncan Myra Mortenson Sylvia Augusto Mike Lassas Rob Coffee Scott Wallace Ed Marchese Merv Vater

Demand the best — insist on PROCO!

GOODYEAR Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.com

molded PTFE expansion joints

The PROCO Series 440 PTFE Molded Expansion Joints are used for corrosive applications found in: Chemical-Petrochemical, Industrial Process Piping Systems, Power Generation Plants, Pulp/Paper Plants, Water-Wastewater Sewage and Pollution Control Systems where metallic joints/lap joints or PTFE & FEP-lined rubber expansion joints may have been pretiously used or specified. Specify PROCO Series 440 expansion joints for installation between anchor points or next to mechanical equipment such as: Absorption Machines, Blowers, Chillers, Fans, Graphite Heat Exchangers, Glass Lined Vessels, Pumps, and Exotic Alloy/Plastic/Glass Lined Piping Systems. The Series 440 expansion joints are designed to: (1) Absorb Pipe Movements/Stress, (2) Reduce System Noise, (3) Reduce Mechanical Vibration, (4) Compensate Alignment/Offset, (5) Eliminate Electrolysis, (6) Protect against Start-up/Surge Forces. Our history in the manufacture of expansion joint products dates back to 1930. When an engineered solution is needed to solve a piping problem, call PROCO.

Engineered For Your Application. The PROCO Series 440 PTFE expansion joints are available in 2, 3, and 5 convolutions. Each convolution profile offers different overall lengths (face-to-face dimensions), movements and pressure/temperature rating to fit the required specification. Available styles include:

• Style 442-BD: Features two convolutions for minimal movements, higher pressure/temperature ratings and short face-to-face opening requirements. Style 442-BD sizes range from 1" to 24" diameter. (See Table 1)

• Style 442-E: Features two convolutions, and is engineered with T-band compression limiters, limit cables (meets MIL-W-8342), and face-to-face lengths to be an exact equal to other more expensive, competitor models. Style 442-E sizes range from 1" to 12" diameter. (See Table 2)

Style 443-BD: Features three convolutions and is designed for moderate movement and ease of system installation. Style 443-BD sizes range from 1" to 24" diameter. (See Table 3)
 Style 443-E: Features three convolutions, and is engineered with T-band compression limiters,

limit cables (meets MIL-W-8342), and face-to-face lengths to be an exact equal to other more expensive, competitor models. Style 443-E sizes range from 1" to 8" diameter. (See Table 4)

• Style 445-BD: Features five convolutions, and is designed for maximum movements, low pressure/temperature ranges, vibration reduction and greater face-to-face lengths. Style 445-BD sizes range from 1" to 20" diameter. (See Table 5)

 Style 445-E: Features five convolutions, and is engineered with T-band compression limiters, limit cables (meets MIL-W-8342), and face-to-face lengths to be an exact equal to other more expensive, competitor models. Style 445-E sizes range from 1" to 6" diameter. (See Table 6)

• Style 440-BE: Features Styles' 440-E Neutral Lengths with Styles' 440-BD Limit Bolts. (See Table 7)

Absorbs Pipe-Wall and Fluid-Borne Noise. The quiet operating PROCO Series 440 PTFE expansion joints are a replacement for "sound transmitting" metallic/lap joints. Pipe Wall sound loses energy and is absorbed as the noise carried by the piping enters and exits the PTFE section. Fluid-borne noise is absorbed by the volumetric expansion (breathing of the connector). This action cushions water hammer and smoothes out pumping impulses.

Isolates Vibration and Motion. PROCO Series 440 PTFE expansion joints should be installed immediately after and ahead of equipment generating vibration in order to isolate the rotating/vibrating equipment from the rest of the piping system. For optimum performance, the PROCO Series 440 PTFE expansion joints should be installed horizontally to the shaft. Vertical and perpendicular installations are also acceptable as these expansion joints will accept axial, lateral and angular movements as well as vibration. Note: For maximum vibration transmission reduction, the pipe section beyond the PTFE expansion joints must be anchored or sufficiently rigid.

GOODYEAR Call Toll Free: 1-866-711-467

Protecting Piping And Equipment Systems From Stress/Motion Reduces System Stress and Strain. Rigid attachment of piping to critical or mechanical equipment can produce excessive loading. Thermal or mechanically created strain-stress-shock are cushioned and absorbed with the installation of a flexible, low spring rate, PROCO Series 440 PTFE expansion joint. The PROCO Series 440 PTFE expansion joint adds a flexible component to the system that automatically self-corrects for misalignment created by structural movements caused by settling, pipe expansion or ground shifts.

Tested Force Pound and Spring Rate Tables. At PROCO we have machine tested nearly every size of the Series 440 PTFE expansion joints for Axial and Lateral Spring Rates and have provided Thrust/Force factors so designers can properly design system restraints. It should be noted that the PROCO Series 440 PTFE expansion joints are in accordance with the performance characteristics of the Fluid Sealing Association's Non-Metallic Expansion Joint Division.

Superior "Flex Life" and Strength. The PROCO Series 440 PTFE expansion joints are contour molded from extruded tubing providing superior "Flex Life" and Strength. Utilizing TEFLON® T-62 resins from DuPont, the PROCO Series 440 PTFE expansion joints provide dramatically more cycle life than that of PFA or FEP.

Flange and Limit Bolts/Cables. All PROCO Series 440 PTFE expansion joint flange configurations are coated with a rust inhibitive primer to prevent corrosion and are dimensionally tapped to ANSI 125/150# Standards. Hole drilling on center line, other drilling standards, or other flange materials, such as 316 stainless, 304 stainless, or Epoxy Coated flanges are available on special order. In addition, all PROCO Series 440 PTFE expansion joints are supplied with factory set limit bolts or cables to prevent over-extension during operation.

Chemical Service Capability at Minimal Cost. Expensive, exotic metal, PTFE or FEP lined rubber expansion joints for severe chemical service can be replaced with the low cost PROCO Series 440 PTFE expansion joints. The PTFE bellows are van stoned to the flanges which allows all wetted surfaces to come in contact with only the PTFE material. Specify the PROCO Series 440 PTFE expansion joints where high temperatures coupled with lower pressures or lower temperatures coupled with higher pressures are proposed. The PROCO Series 440 PTFE offers the lowest cost expansion joint that is impervious to chemical attack. Use the PROCO "Chemical to Elastomer Guide" for reference on chemical compatibility.

Services and Locations. PROCO Series 440 PTFE Expansion Joints have been supplied and successfully used by a range of customers worldwide in the process industries for use in both organic and inorganic chemical processing and production, including such demanding applications as agrochemical and pharmaceutical chemical production, acid processing and food manufacture.

Information • Ordering • Pricing • Delivery. Day or night, weekends and holidays...the PROCO phones are monitored 24 hours around the clock. When you have a question, you can call us.

We Ship World Wide

Γ

WebSales@GoodyearRubberProducts.com

molded PTFE expansion joints

Table 1: Sizes • Movements • Spring Rates • Flange Standards • Temperatures • Vacuum • Weights

				_				- Thang		canaana			u103 -			Torginta	_	_	_	_	_	_	_	_	_		
		BAS	ENT CAPA Sed on th Lution d	WO .	SPF	RING RAT	TE CAPAB	ILITY ²			Ð	PANSION	JOINT FL	ANGE DRI	LLING											40.3	
NOMINAL Size I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) Movement	LATERAL (∆y) Deflection	ANGULAR Deflection	COMPRESSION Spring rate	EXTENSION Spring rate	Lateral Spring rate	THRUST FACTOR	# HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	E FLARE), "B"	FLANGE THICKNESS	NOMINAL FLANGE 0.D.	LIMIT BOLT Diameter	BOLT CIRCLE Limit Bolt "C"	LIMIT BOLT "Ear" 0.d.		PR	ESSUR (PSI)	ie at t G) @		RATUF °F	Ε		VACUUM RATING ³	WEIGHT / LBS
NO	INC	IN	IN	DEG.	LB _f /IN	LB _f /IN	LB _f /IN	H	Н#	돋오	B0 FL/	PTFE 0.D.	E 王	0.C		LIN	E/IN "E/I	70°	100°	150°	200°	250 °	300°	350°	400°	Hg at Temp.	WE
1.00	1.375	0.250	.125	7	104	80	104	2.76	4	1/2- 13	3.125	2.000	.313	4.250	.250	5.125	6.000	185	170	148	130	115	100	84	68	29.9" @ 425°F	2
1.25	1.375	0.250	.125	7	61	137	400	2.25	4	1/2- 13	3.500	2.520	.394	4.630	.250	5.196	6.850	185	170	148	130	115	100	84	68	CF	5
1.50	1.375	0.250	.125	7	320	180	224	4.60	4	1/2- 13	3.875	2.875	.344	5.000	.250	5.875	6.750	185	170	148	130	115	100	84	68	29.9" @ 425°F	3
2.00	1.563	0.250	.125	7	512	300	240	7.07	4	5/8- 11	4.750	3.625	.438	6.000	.375	6.875	8.125	185	170	148	130	115	100	84	68	29.9" @ 425°F	7
2.50	2.250	0.313	.125	7	457	278	328	9.62	4	5/8- 11	5.500	4.125	.500	7.000	.375	8.125	9.375	185	170	148	130	115	100	84	68	29.9" @ 425°F	10
3.00	2.250	0.375	.188	7	648	320	319	15.90	4	5/8- 11	6.000	5.000	.500	7.500	.375	8.750	10.000	185	170	148	130	115	100	84	68	29.9" @ 425°F	10
4.00	2.625	0.500	.250	7	480	280	400	23.75	8	5/8- 11	7.500	6.188	.625	9.000	.375	9.875	11.125	185	170	148	130	115	100	84	68	29.9" @ 400°F	18
5.00	3.250	0.500	.250	7	440	440	320	33.17	8	3/4- 10	8.500	7.313	.750	10.000	.500	11.500	13.000	185	170	148	130	115	100	84	68	29.9" @ 400°F	24
6.00	2.750	0.500	.250	7	440	386	440	50.24	8	3/4- 10	9.500	8.500	.750	11.000	.500	12.500	14.000	185	170	148	130	115	100	84	68	29.9" @ 400°F	29
8.00	4.000	0.500	.250	7	450	390	480	83.49	8	3/4- 10	11.750	10.625	.938	13.500	.500	14.750	16.250	164	150	129	112	100	87	73	60	29.9" @ 250°F	47
10.00	5.250	0.500	.250	7	760	600	580	108.38	12	7/8- 9	14.250	12.750	1.000	16.000	.500	17.500	19.000	164	150	129	112	100	87	73	60	29.9" @ 250°F	64
12.00	6.000	0.500	.250	7	1300	420	700	176.63	12	7/8- 9	17.000	15.000	1.000	19.000	.625	20.500	22.000	70	59	48	40	35	30	26	22	29.9" @ 75°F	115
14.00	6.313	0.750	.375	7	320	1056	1256	233.59	12	1- 8	18.750	16.250	1.188	21.000	1.420	24.172	27.313	70	59	48	40	35	30	26	22	10.0" @ 212°F	126
16.00	7.000	1.000	.375	7	297	1096	1256	259.68	16	1- 8	21.250	18.500	1.188	23.500	1.420	27.563	31.500	70	59	48	40	35	30	26	22	10.0" @ 212°F	159
18.00	7.938	1.000	.375	7	440	1941	1370	321.90	16	1 1/8- 8	22.750	21.000	1.188	25.000	1.420	29.000	32.906	70	59	48	40	35	30	26	22	9.0" @ 212°F	174
20.00	9.000	1.000	.375	7	_	_	_	374.57	20	1 1/8- 8	25.000	23.000	1.188	27.500	1.420	31.500	35.438	70	59	48	40	35	30	26	22	6.0" @ 212°F	183
24.00	6.313	0.625	.375	7	_	_	_	538.36	20	1 1/4- 7	29.500	27.250	1.344	32.000	1.420	35.906	39.844	70	59	48	40	35	30	26	22	4.0" @ 212°F	238

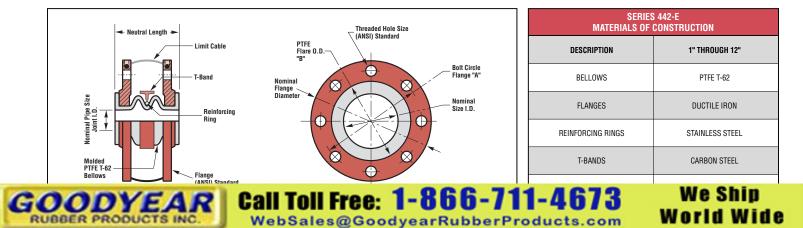
NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Bolts installed.
 2. Spring Rate Capability is based on 1" of movement at zero pressure conditions.
 3. Vacuum Rating is based from fully extended position. CF = Contact Factory.

ſ	Elastic Stop Nut 🖌 Neutral Length 🍝	er	Threaded Ho ∑ (ANSI) Stand			MAT	SERIES 442-BE FERIALS OF CONST	
			PTFE Flare 0.D.	"Ear" O.D.		DESCRIPTION	1" THROUGH 12"	14" THROUGH 24"
		inforcing na		Bolt Circle Flange "A"		BELLOWS	PTFE T-62	PTFE T-62
		Nomir		XXX		FLANGES	DUCTILE IRON	ZINC PLATED CARBON STEEL
	Jain Pipe Stee	Flange Diame		Nominal Size I.D.	REI	NFORCING RINGS	STAINLESS STEEL	STAINLESS STEEL
				774		LIMIT BOLTS	CARBON STEEL	CARBON STEEL
				Ø Ø		NUTS	CARBON STEEL	CARBON STEEL
	Factory Set	e) Standard		Bolt Circle		GROMMETS	NEOPRENE	NEOPRENE
-	ODYEAR	Call To	nii Free 1	I-866-71	11-	467	3	We Ship
RU	BBER PRODUCTS INC.			yearRubberP				orld Wide

туле 579LE 442-Е

molded PTFE expansion joints

Table 2: Sizes • Movements • Spring Rates • Flange Standards • Temperatures • Vacuum • Weights

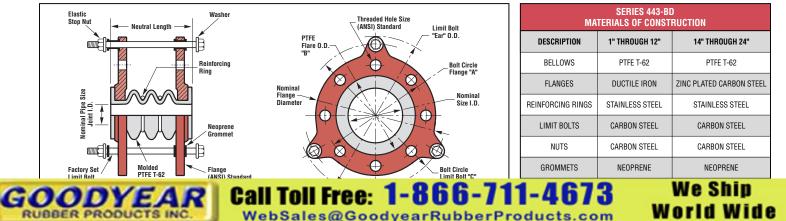

		BAS	ENT CAPAI Sed on t\ Lution di	NO	SPF	RING RATE	CAPABILI	TY ²			EXPANSION J	DINT FLANGE DF	RILLING	<u> </u>	PRESSURE AT TEMPERATURE								33	
NOMINAL Size I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) Movement	LATERAL (∆y) Deflection	ANGULAR Deflection	COMPRESSION Spring rate	EXTENSION Spring rate	LATERAL Spring rate	THRUST FACTOR	# HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	PTFE FLARE 0.D. "B"	FLANGE THICKNESS	NOMINAL FLANGE 0.D.		PR	ESSUF (PSI			RATUF °F	RE		VACUUM RATING ³	WEIGHT / LBS
NOI	INC	IN	IN	DEG.	LB _f /IN	LB _f /IN	LB _t /IN	IH	н ж	ËĒ	BOI	LO LI	2 표	NOI 0.D	70 °	100°	150°	200 °	250 °	300°	350°	400°	Hg at Temp.	WE
1.00	1.750	0.344	.250	16	140	144	120	2.76	4	1/2- 13	3.125	2.000	.438	4.250	185	170	148	130	115	100	84	68	29.9" @ 425°F	3
1.50	1.813	0.344	.250	13	240	200	240	4.60	4	1/2- 13	3.875	2.875	.469	5.000	185	170	148	130	115	100	84	68	29.9" @ 425°F	4
2.00	1.875	0.344	.281	12	430	350	440	7.07	4	5/8- 11	4.750	3.625	.484	6.000	185	170	148	130	115	100	84	68	29.9" @ 425°F	7
3.00	2.188	0.406	.313	10	650	320	350	15.90	4	5/8- 11	6.000	5.000	.578	7.500	185	170	148	130	115	100	84	68	29.9" @ 425°F	10
4.00	2.281	0.438	.313	9	360	280	630	23.75	8	5/8- 11	7.500	6.188	.578	9.000	185	170	148	130	115	100	84	68	29.9" @ 400°F	17
6.00	2.531	0.469	.375	7	460	350	720	50.24	8	3/4- 10	9.500	8.500	.641	11.000	185	170	148	130	115	100	84	68	29.9" @ 400°F	27
8.00	2.750	0.531	.406	6	300	230	800	81.48	8	3/4- 10	11.750	10.625	.688	13.500	164	150	129	112	100	87	73	60	29.9" @ 250°F	35
10.00	2.969	0.563	.438	5	1280	870	1000	108.38	12	7/8- 9	14.250	12.750	.734	16.000	164	150	129	112	100	87	73	60	29.9" @ 250°F	52
12.00	3.094	0.594	.469	5	380	240	1000	176.63	12	7/8- 9	17.000	15.000	.813	19.000	70	59	48	40	35	30	26	22	29.9" @ 75°F	107

тм

NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Cables installed.

2. Spring Rate Capability is based on 1" of movement at zero pressure conditions.

3. Vacuum Rating is based from fully extended position.



molded PTFE expansion joints

Table 3: Sizes • Movements • Spring Rates • Flange Standards • Temperatures • Vacuum • Weights MENT CAPABILITIE SPRING RATE CAPABILITY² EXPANSION JOINT FLANGE DRILLING BASED ON THRE CONVOLUTION DESIGN RATING PRESSURE AT TEMPERATURE COMPRESSION Spring rate EXTENSION SPRING RATE Lateral Spring rate ± axial (∆x) Movement LATERAL (∆y) Deflection LENGTH NOMINAL FLANGE D.D. (PSIG) (a ANGULAR Deflection BOLT CIRCLE Limit Bolt "C" **THRUST FACTOR** VACUUM LBS BOLT CIRCLE FLANGE "A" FLARE FLANGE THICKNESS BOLT 0.D. THREADED HOLE SIZE LIMIT BOLT DIAMETER NEUTRAL I INCHES HOLES WEIGHT LIMIT EAR' ž Ë. Hg at Temp IN LB_f/IN LB_f/IN LB_f/IN IN DEG 100° 150° 300° 350° 400 70° 200 250° 29.9" @ 1.00 1.750 0.500 .250 190 4 1/2-13 2.000 .313 4.250 .250 5.125 6.000 90 53 2 14 82 96 2.81 3.125 138 126 107 115 64 45 400°F 1.25 1.810 0.500 .250 40 120 314 4 1/2- 13 3.500 4.630 .250 5.196 128 120 96 85 72 56 42 36 CF 5 14 2.25 2.520 .394 6.850 29.9" @ 1.50 2.000 0.500 .250 14 84 66 108 5.09 4 1/2- 13 3.875 2.875 .344 5.000 .250 5.875 6.750 138 126 107 90 115 64 53 45 4 400°F 29.9" @ 2.00 2,750 0.750 .375 14 69 76 109 911 Δ 5/8-11 4.750 3.625 .438 6 000 .375 6.875 8.125 138 126 107 ٩N 115 64 53 45 8 400°F 29.9" @ 2.50 91 107 45 11 3.188 0.750 .375 14 97 160 11.41 4 5/8-11 5.500 4.125 .500 7.000 .375 8.125 9.375 138 126 90 115 64 53 400°F 29.9" @ 3.00 3.625 1.000 .500 124 125 194 16.91 5/8-11 6.000 5.000 7.500 .375 8.750 10.000 138 126 107 90 115 64 53 45 13 14 4 .500 400°F 29.9" @ 4.00 3.625 1.000 .500 14 220 155 264 25.40 5/8-11 7.500 6.188 .625 9.000 .375 9.875 11.125 138 126 107 90 115 64 53 45 19 8 400°F 29.9" @ 5.00 4.000 1.000 .500 14 320 210 324 34.45 8 3/4-10 8.500 7.313 .750 10.000 .500 11.500 13.000 138 126 107 90 115 64 53 45 25 300°F 29.9" @ 6.00 45 4.000 1.125 .563 14 289 187 266 50.24 8 3/4-10 9.500 8.500 .750 11.000 .500 12,500 14.000 138 126 107 90 115 64 53 30 300°F 29.9" @ 6.000 16.250 8.00 1.125 .563 14 178 218 423 83.49 8 3/4-10 11.750 10.625 .938 13.500 .500 14.750 120 110 94 80 100 57 47 38 48 125°F 19.0" @ 10.00 7.000 1.188 .500 14 420 531 857 128.55 12 7/8-9 14.250 12.750 1.000 16.000 .500 17.500 19.000 82 70 64 52 46 39 34 30 60 212°F 10.0" @ 12.00 7.875 1.188 .625 14 743 542 857 144.72 12 7/8-9 17.000 15.000 1.000 19.000 .625 20.500 22,000 82 70 64 52 46 40 34 30 77 212°F 10.0" @ 14.00 8.500 1.250 .688 14 239 628 970 233.59 12 1-8 18,750 16.250 1.188 21.000 1.420 24.172 27.313 82 70 64 52 46 40 34 30 132 212°F 10.0" @ 16.00 1.375 .750 245 571 970 259.68 16 21.250 18.500 1.188 23.500 1.420 31.500 82 70 64 52 46 40 34 30 165 9.188 14 1-8 27.563 212°F 9.0" @ 201 18.00 11.063 1.188 .750 14 1085 321.90 16 1 1/8- 8 22.750 21.000 1.188 25.000 1.420 29.000 32.906 60 58 48 42 36 30 28 26 212°F 6.0" @ 20.00 12.875 1.188 1.000 14 1142 374.57 20 1 1/8- 8 25.000 23.000 1.188 27.500 1.420 31.500 35.438 60 58 48 42 36 30 28 26 243 212°F 4.0" @ 750 14 538 36 1 344 32 000 1 4 2 0 60 58 48 42 36 30 28 26 309 24.00 11 875 1 000 1 1/4-7 29 500 27 250 35 906 39 844 20 212°F

NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Bolts installed 2. Spring Rate Capability is based on 1" of movement at zero pressure conditions.

3. Vacuum Rating is based from fully extended position. CF = Contact Factory.

ТМ STYLE

ACUUM RATING

Hg at Temp.

29.9" @

29.9" @

400°F

29.9" @

400°F

29.9" @

400°F

29.9" @

400°F

29.9" @

300°F

29.9" @

125°F

45 400°F

45

45

45

45

45

38

/LBS

WEIGHT

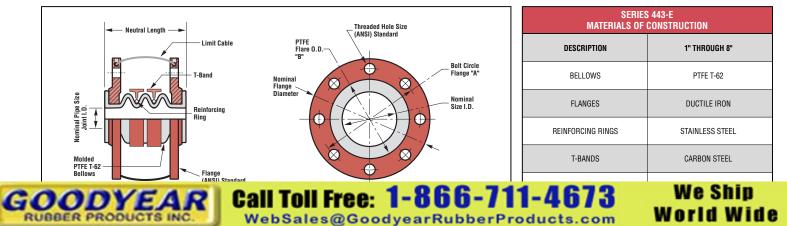
3

5

8

14

19


30

39

molded PTFE expansion joints Table 4: Sizes • Movements • Spring Rates • Flange Standards • Temperatures • Vacuum • Weights OVEMENT CAPABILITIES SPRING RATE CAPABILITY² **EXPANSION JOINT FLANGE DRILLING** SED ON ' CONVOLUTION DESIGN PRESSURE AT TEMPERATURE COMPRESSION Spring rate EXTENSION Spring rate LATERAL (Δy) Deflection Lateral Spring rate NOMINAL FLANGE 0.D. LENGTH ± axial (∆x) movement (PSIG) (a ANGULAR Deflection THRUST FACTOF BOLT CIRCLE FLANGE "A" PTFE FLARE 0.d. "b" FLANGE THICKNESS NEUTRAL L INCHES THREADED HOLE SIZE NOMINAL SIZE I.D. # HOLES IN IN DEG. LB_f/IN LB_f/IN LB_f/IN 350° 400° 70° 100° 150° 200° 250° 300° 1.00 0.500 260 3.125 2.000 .438 126 2.313 .375 24 130 130 2.81 4 1/2-13 4.250 138 107 90 76 64 53 1.50 2.406 0.531 .375 20 80 70 110 5.09 4 1/2-13 3.875 2.875 .469 5.000 138 126 107 90 76 64 53 2.00 2.500 0.531 .406 17 70 80 160 9.11 4 5/8-11 4.750 3.625 .484 6.000 138 126 107 90 76 64 53 3.00 2.906 0.625 .469 15 140 160 190 16.91 4 5/8-11 6.000 5.000 .578 7.500 138 126 107 90 76 64 53 4.00 3.063 0.656 .500 13 220 160 190 25.40 8 5/8-11 7.500 6.188 .578 9.000 138 126 107 90 76 64 53 6.00 107 3.375 0.719 10 50.24 3/4-10 9.500 8.500 .641 11.000 138 126 90 76 53 .531 350 190 540 8 64 8.00 3.656 0.781 9 450 170 3/4-10 11.750 10.625 .688 13.500 110 94 80 67 57 47 .594 750 81.48 8 120

NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Cables installed. 2. Spring Rate Capability is based on 1" of movement at zero pressure conditions

3. Vacuum Rating is based from fully extended position.

тм STYLE

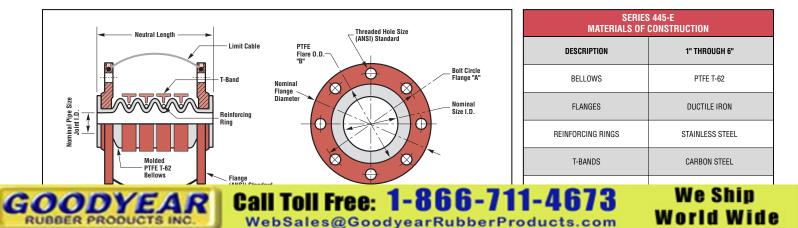
molded PTFE expansion joints

Tab	le 5: S	izes •	Move	ments	• Sp	ring R	ates	• Flang	e Si	tandard	s • Te	mperat	ures	Vacu	ım • \	Neights	6										
		BA	ENT CAPA Sed on F Lution D	IVE	SPF	RING RAT	E CAPAB	ILITY ²			E)	(PANSION	JOINT FL	ANGE DRII	LLING											NG ³	
NOMINAL Size I.D.	Neutral Length Inches	± AXIAL (∆x) Movement	LATERAL (∆y) Deflection	ANGULAR Deflection	COMPRESSION Spring rate	EXTENSION Spring rate	Lateral Spring rate	THRUST FACTOR	HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	PTFE FLARE 0.D. "B"	FLANGE THICKNESS	NOMINAL FLANGE 0.D.	LIMIT BOLT Diameter	BOLT CIRCLE Limit Bolt "C"	LIMIT BOLT "Ear" 0.d.		PR	ESSUF (PSI		TEMPE @	°F	RE		VACUUM RATING ³	WEIGHT / LBS
NOI	INC	IN	IN	DEG.	LB _f /IN	LB _f /IN	LB _f /IN	岸	Η#	ËË	FLA	PTF 0.D	THI	NOI 0.D		BOI	EA EA	70°	100°	150°	200°	250°	300°	350°	400°	Hg at Temp.	WE
1.00	3.000	0.500	.500	20	30	44	22	2.81	4	1/2- 13	3.125	2.000	.313	4.250	.250	5.125	6.000	72	61	46	40	34	29	27	24		2
1.25	2.670	0.394	.470	20	36	114	171	2.25	4	1/2- 13	3.500	2.520	.394	4.630	.250	5.196	6.850	62	56	42	36	30	26	22	22		5
1.50	3.500	0.750	.500	20	75	83	46	5.09	4	1/2- 13	3.875	2.875	.344	5.000	.250	5.875	6.750	72	61	46	40	34	29	27	24	NOT	5
2.00	4.000	1.000	.500	20	60	47	50	9.11	4	5/8- 11	4.750	3.625	.438	6.000	.375	6.875	8.125	72	61	46	40	34	29	27	24		9
2.50	4.600	0.980	.510	20	116	319	285	10.08	4	5/8- 11	5.500	4.125	.500	7.000	.375	8.125	9.375	62	56	42	36	30	26	22	22	DESIGNED	11
3.00	5.000	1.000	.500	20	55	60	170	16.91	4	5/8- 11	6.000	5.000	.500	7.500	.375	8.750	10.000	72	61	46	40	34	29	27	24	510101125	14
4.00	5.250	1.250	.625	20	72	60	80	25.40	8	5/8- 11	7.500	6.188	.625	9.000	.375	9.875	11.125	72	61	46	40	34	29	27	24		20
5.00	6.000	1.250	.625	20	140	388	400	32.33	8	3/4- 10	8.500	7.313	.750	10.000	.500	11.500	13.000	62	56	42	36	30	26	22	22	FOR	26
6.00	6.000	1.250	.625	20	190	130	195	50.24	8	3/4- 10	9.500	8.500	.750	11.000	.500	12.500	14.000	72	61	46	40	34	29	27	24		31
8.00	8.000	1.250	.625	20	304	388	457	76.07	8	3/4- 10	11.750	10.625	.938	13.500	.500	14.750	16.250	48	42	34	30	26	22	22	22		49
10.00	8.750	1.250	.625	20	458	388	457	128.55	12	7/8- 9	14.250	12.750	1.000	16.000	.500	17.500	19.000	48	42	34	30	26	22	22	22	VACUUM	64
12.00	9.000	1.375	.688	20	529	445	457	144.72	12	7/8- 9	17.000	15.000	1.000	19.000	.625	20.500	22.000	48	42	34	30	26	22	22	22		88
14.00	12.790	1.375	.688	20	203	371	514	233.59	12	1- 8	18.750	16.250	1.188	21.000	1.420	24.172	27.313	48	42	34	30	26	22	22	22		143
16.00	13.500	1.625	1.000	20	180	383	514	259.68	16	1- 8	21.250	18.500	1.188	23.500	1.420	27.563	31.500	48	42	34	30	26	22	22	22	SERVICE	179
20.00	20.470	1.625	1.000	20	185	371	571	374.57	20	1 1/8- 8	25.000	23.000	1.188	27.500	1.420	31.500	35.438	48	42	34	30	26	22	22	22		243
	_00									,				1.000		51.000				υ.							

NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Bolts installed. 2. Spring Rate Capability is based on 1° of movement at zero pressure conditions. 3. Style 445-BD is not designed for Vacuum Service.

	Elastic Stop Nut	Neutral Length	Washer	Threaded H		MA	SERIES 445-B TERIALS OF CONST	
				PTFE Flare 0.D.	"Ear" 0.D.	DESCRIPTION	1" THROUGH 12"	14" THROUGH 20"
			Reinforcing	"B"	Bolt Circle	BELLOWS	PTFE T-62	PTFE T-62
	。 「			Nominal	Flange "A"	FLANGES	DUCTILE IRON	ZINC PLATED CARBON STEEL
	aipe Siz		-	Flange Diameter	Nominal Size I.D.	REINFORCING RINGS	STAINLESS STEEL	STAINLESS STEEL
	Nominal Pipe Size Joint I.D.		Neoprene	Φ		LIMIT BOLTS	CARBON STEEL	CARBON STEEL
	≠ ų m∄⊟					NUTS	CARBON STEEL	CARBON STEEL
	Factory Set	Molded PTFE T-62	Flange		Bolt Circle	GROMMETS	NEOPRENE	NEOPRENE
24		YEAR			1-866-71	1-467	3	We Ship
RU	BBER PRO	DUCTS INC.			yearRubberPr			orld Wide

EIGOCEO


molded PTFE expansion joints

Tab	e 6: S	izes •	Moven	nents	• Spri	ng Rat	es • F	lange S	tanda	ards • Te	mperature	s • Vacuu	m • Wei	ghts										
		BA	ENT CAPA Sed on Fi Lution D	IVE	SP	RING RAT	E CAPABII	.ITY ²			EXPANSION J	DINT FLANGE DF	RILLING										4G ³	
NOMINAL Size I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) Movement	LATERAL (∆y) Deflection	ANGULAR Deflection	COMPRESSION Spring rate	EXTENSION Spring rate	Lateral Spring rate	THRUST FACTOR	# HOLES	THREADED Hole Size	BOLT CIRCLE Flange "A"	PTFE FLARE 0.D. "B"	FLANGE THICKNESS	NOMINAL FLANGE 0.d.		PRESSURE AT TEMPERATURE (PSIG) @ °F			VACUUM RATING ³	WEIGHT / LBS				
NOI	NEL	IN	IN	DEG.	LB _f /IN	LB _f /IN	LB _f /IN	Ħ	H #	HE IS	B01 FLA	II O.O	THE	ION D.D	70°	100°	150°	200°	250 °	300°	350°	400 °	Hg at Temp.	WE
1.00	3.500	0.844	.625	39	50	110	50	2.81	4	1/2- 13	3.125	2.000	.438	4.250	72	61	46	40	34	29	27	24	NOT	3
1.50	3.625	0.875	.656	32	75	80	50	5.09	4	1/2- 13	3.875	2.875	.469	5.000	72	61	46	40	34	29	27	24	DESIGNED	7
2.00	3.750	0.875	.656	29	60	50	50	9.11	4	5/8- 11	4.750	3.625	.484	6.000	72	61	46	40	34	29	27	24	FOR	10
3.00	4.375	1.031	.781	25	55	60	170	16.91	4	5/8- 11	6.000	5.000	.578	7.500	72	61	46	40	34	29	27	24	FUK	16
4.00	4.563	1.094	.813	21	70	60	80	25.40	8	5/8- 11	7.500	6.188	.578	9.000	72	61	46	40	34	29	27	24	VACUUM	23
6.00	5.031	1.188	.906	17	190	130	195	50.24	8	3/4- 10	9.500	8.500	.641	11.000	72	61	46	40	34	29	27	24	SERVICE	34

NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Cables installed.

2. Spring Rate Capability is based on 1" of movement at zero pressure conditions.

3. Style 445-E is not designed for Vacuum Service.

molded PTFE expansion joints

(440-E Neutral Lengths with 440-BD Limit Bolts)

Tab	e 7: S	izes •	Move	ments	• Sp	ring R	ates	• Flang	e S	tandard	s • Tei	mperat	ures •	Vacu	ım • \	Weights	\$										
			10VEMEN Pabilitii		SPR	ING RAT	E CAPAE	BILITY ²			E)	PANSION	JOINT FL	ANGE DRI	LLING											3	
NOMINAL Size I.D.	NEUTRAL LENGTH INCHES	± AXIAL (∆x) MOVEMENT	LATERAL (<u>A</u> V) Deflection	ANGULAR Deflection	COMPRESSION Spring Rate	EXTENSION Spring rate	LATERAL Spring rate	THRUST FACTOR	HOLES	THREADED HOLE SIZE	BOLT CIRCLE Flange "A"	PTFE FLARE 0.D. "B"	FLANGE THICKNESS	NOMINAL FLANGE 0.D.	LIMIT BOLT Diameter	BOLT CIRCLE Limit Bolt "C"	LIMIT BOLT "Ear" 0.d.		PR	ESSUF (PSI		TEMPE @	RATUF °F	₹E			WEIGHT / LBS
		IN	IN	DEG.	LB _f /IN	LB _f /IN	LB _f /IN		#	돈문	명국	۲o	L	DN D.O	53		3	70°	100°	150°	200°	250°	300°	350°	400°	Hg at Temp.	3
Style	442-BE	- 442	2-E Neu	tral Len	gths w	ith 44.	2-BD Li	mit Bolts	s	1						1	1									00.01.0	
1.00	1.750	0.344	.125	7	140	144	120	2.76	4	1/2- 13	3.125	2.000	.438	4.250	.250	5.125	6.000	185	170	148	130	115	100	84	68	29.9" @ 425°F	2
1.50	1.813	0.344	.125	7	240	200	240	4.60	4	1/2- 13	3.875	2.875	.469	5.000	.250	5.875	6.750	185	170	148	130	115	100	84	68	29.9" @ 425°F	2
2.00	1.875	0.344	.125	7	430	350	440	7.07	4	5/8-11	4.750	3.625	.484	6.000	.375	6.875	8.125	185	170	148	130	115	100	84	68	29.9" @ 425°F	7
3.00	2.188	0.406	.188	7	650	320	350	15.90	4	5/8-11	6.000	5.000	.578	7.500	.375	8.750	10.000	185	170	148	130	115	100	84	68	29.9" @ 425°F	10
4.00	2.281	0.438	.250	7	360	280	630	23.75	8	5/8-11	7.500	6.188	.578	9.000	.375	9.875	11.125	185	170	148	130	115	100	84	68	29.9" @ 400°F	18
6.00	2.531	0.469	.250	7	460	350	720	50.24	8	3/4- 10	9.500	8.500	.641	11.000	.500	12.500	14.000	185	170	148	130	115	100	84	68	29.9" @ 400°F	29
8.00	2.750	0.531	.250	7	300	230	800	81.48	8	3/4- 10	11.750	10.625	.688	13.500	.500	14.750	16.250	164	150	129	112	100	87	73	60	29.9" @ 250°F	47
10.00	2.969	0.563	.250	6	1280	870	1000	108.38	12	7/8- 9	14.250	12.750	0.734	16.000	.500	17.500	19.000	164	150	129	112	100	87	73	60	29.9" @ 250°F	64
12.00	3.094	0.594	.250	5	380	240	1000	176.63	12	7/8- 9	17.000	15.000	0.813	19.000	.625	20.500	22.000	70	59	48	40	35	30	26	22	29.9" @ 75°F	115
Style	443-BE	— 443	3-E Neu	tral Len	gths w	ith 44.	3-BD Li	mit Bolts	\$	1						1					-						
1.00	2.313	0.500	.250	14	130	130	260	2.81	4	1/2- 13	3.125	2.000	.438	4.250	.250	5.125	6.000	138	126	107	90	76	64	53	45	29.9" @ 400°F	2
1.50	2.406	0.531	.250	12	80	70	110	5.09	4	1/2- 13	3.875	2.875	.469	5.000	.250	5.875	6.750	138	126	107	90	76	64	53	45	29.9" @ 400°F	4
2.00	2.500	0.531	.375	12	70	80	160	9.11	4	5/8- 11	4.750	3.625	.484	6.000	.375	6.875	8.125	138	126	107	90	76	64	53	45	29.9" @ 400°F	8
3.00	2.906	0.625	.500	10	140	160	190	16.91	4	5/8- 11	6.000	5.000	.578	7.500	.375	8.750	10.000	138	126	107	90	76	64	53	45	29.9" @ 400°F	13
4.00	3.063	0.656	.500	10	220	160	190	25.40	8	5/8- 11	7.500	6.188	.578	9.000	.375	9.875	11.125	138	126	107	90	76	64	53	45	29.9" @ 400°F	19
6.00	3.375	0.719	.563	9	350	190	540	50.24	8	3/4- 10	9.500	8.500	.641	11.000	.500	12.500	14.000	138	126	107	90	76	64	53	45	29.9" @ 300°F	30
8.00	3.656	0.781	.563	9	450	170	750	81.48	8	3/4- 10	11.750	10.625	.688	13.500	.500	14.750	16.250	120	110	94	80	67	57	47	38	29.9" @ 125°F	48
Style	445-BE	- 445	5-E Neu	tral Len	gths w	ith 44	5-BD Li	mit Bolts	5	I																	
1.00	3.500	0.844	.500	20	50	110	50	2.81	4	1/2- 13	3.125	2.000	.438	4.250	.250	5.125	6.000	72	61	46	40	34	29	27	24	NOT	2
1.50	3.625	0.785	.500	20	75	80	50	5.09	4	1/2- 13	3.875	2.875	.469	5.000	.250	5.875	6.750	72	61	46	40	34	29	27	24	-	5
2.00	3.750	0.875	.500	15	60	50	50	9.11	4	5/8- 11	4.750	3.625	.484	6.000	.375	6.875	8.125	72	61	46	40	34	29	27	24	DESIGNED	9
3.00	4.375	1.031	.500	17	55	60	170	16.91	4	5/8- 11	6.000	5.000	.578	7.500	.375	8.750	10.000	72	61	46	40	34	29	27	24	FOR	14
4.00	4.563	1.094	.625	15	70	60	80	25.40	8	5/8- 11	7.500	6.188	.578	9.000	.375	9.875	11.125	72	61	46	40	34	29	27	24	VACUUM	20
6.00	5.031	1.188	.625	15	190	130	195	50.24	8	3/4- 10	9.500	8.500	.641	11.000	.500	12.500	14.000	72	61	46	40	34	29	27	24	SERVICE	31
																											1

NOTES: 1. Movements are non-concurrent and based from Neutral Length with Limit Bolts installed.

2. Spring Rate Capability is based on 1" of movement at zero pressure conditions.

3. Vacuum Rating is based from fully extended position. Style 445-BE is not designed for Vacuum Service.

PROCO STYLE NUMBER:			STYLE 440-B	E MATERIALS OF CONS	STRUCTION		
442-BE — 1" THROUGH 12"	BELLOWS	FLANGES	REINFORCING RINGS	LIMIT BOLTS	NUTS	GROMMETS	WASHERS
443-BE — 1" THROUGH 8"							
BBER PRODUCTS IN			ree: 1-8 @Goodyear				We Ship orld Wide

Installation Instructions for Series 440 PTFE Expansion Joints

			TOR		TABLE	E LIST	ING					
SIZE I.D. (IN)	1.0	1.25	1.5	2.0	2.5	3.0	4.0	5.0	6.0	8.0	10.0	12.0
TORQUE (FT/LBS)	10	16	25	52	47	82	54	80	100	135	125	155
TOLERANCE (+/-)(FT/LBS)	2	3	6	13	11	20	13	20	24	32	31	38
Notes: 1. Bolt Torque requirements	may vary d	epending on m	ating flange n	naterial and in	stallation.							

tes: 1. Bolt Torque requirements may vary depending on mating flange material and installation.
 "Over-Torque" may cause the PTFE material to creep.

1. Service Conditions: Make sure the expansion joint ratings for temperature, vacuum, spring rates and movements match the system requirements. Contact PROCO if the system requirements exceed those of the expansion joint selected.

2. Alignment: PROCO Series 440 PTFE expansion joints are not designed to make up for piping misalignment error. Pipe misalignment should be no more than 1/8" in any direction. Misalignment of an expansion joint will reduce the rated movements and can cause stress of material properties, thus causing reduced service life.

3. Limit Bolt/Cable: Limit bolts and cables are factory set at the maximum allowable travel position to prevent over extension. Do not remove or alter nuts at any time. Damage or personal injury can result due to changes in limit bolt/cable settings.

4. Anchoring: Solid anchoring is required whenever the pipeline changes direction. PROCO Series 440 PTFE expansion joints should be located as close as possible to these anchor points. If an anchoring system is not used, any associated pressure thrust can cause excessive movement, ultimately damaging the expansion joint. (It should be noted that the attached limit bolts/cables are designed to limit movement and are not designed to handle pressure thrust.)

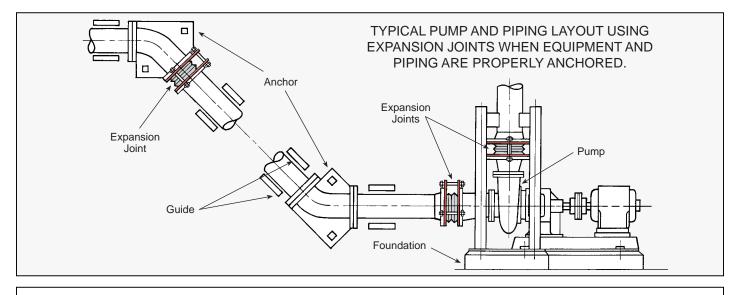
5. Pipe Support: Piping must be supported by hangers or anchors so expansion joints do not carry any pipe weight.

6. Personnel Protection: It is strongly recommended that spray shields be used for all hazardous service to protect against serious personal injury in the event of expansion joint failure. (Contact PROCO for spray shield information.)

7. Installation:

a. Store expansion joints with wood covers in-place to protect PTFE flange surfaces from damage until ready to install.

b. Check to make sure PTFE surfaces are clean and free of foreign sediment. Remove nicks, burrs and deep scratches with a fine emery cloth. If surface irregularities cannot be completely removed, install a PTFE envelope-type gasket to obtain an adequate seal.


c. Install the PROCO Series 440 PTFE expansion joints to the prescribed neutral lengths. If expansion joints are used in high temperature processes, it is recommended that units be installed at/near the extended values. For cold process installations, expansion joints should be installed in a nearly compressed length. These settings will enable the expansion joint to realize full travel capabilities. (See appropriate Tables for Neutral Lengths.)

d. Thread installation bolts from mating flange side to prevent possible damage to PTFE elements. Extend bolts beyond the expansion joint flange by no more than 1-2 threads. Nuts are not necessary due to threaded flange holes.

e. Tighten flange bolts with a torque wrench. Tighten in an alternate crossing pattern in 20% increments until 80% of final bolt torques have been achieved. Tighten to final torque values (listed in Torque Table Listing) in a clockwise fashion around the flange to ensure bolts carry equal stress burdens.

f. Re-tighten bolts after first cycle of operation. Re-tighten as necessary after every planned maintenance shutdown. All bolts should be re-torqued to the above listed values.

8. Operations: After expansion joints are installed, it may be necessary to air blast the exterior to remove foreign debris, such as metal chips, from between the convolutions. The expansion joint should then be covered with a shield to protect from damage and foreign debris during operation. (Note: Do not weld in immediate vicinity of expansion joint unless it is properly protected.)

Call Toll Free: 1-866-711-4673

WebSales@GoodyearRubberProducts.

ENGINEERING DESIGN NOTES:

GOODYEAR

1. It is essential that piping system thrusts be calculated to ensure correct sizing of anchors and pipe supports, plus ensure that allowable thrust forces on adjacent mechanical and rotating equipment are not exceeded. Please use the following formulas:

$T_p = P \cdot T_f$

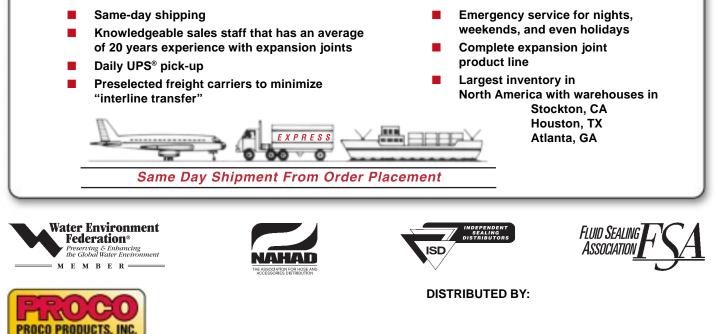
 T_{P} is the pressure thrust (lb_f), P is the system operating pressure (Psig) and T_{1} is the thrust factor (or bellows effective area [in²]). The pressure thrust, T_{P} , will act in the axial direction and must be added to the axial

$Rx = T_p + (Fx \bullet \Delta x)$

Rx is the pipe support reaction force (lb_f), **T**_p is the pressure thrust (lb_f), **Fx** is the axial spring force of the unit and Δx is the expected or designed axial movement of the unit (See Tables 1-6).

2. It should be noted that axial spring rate values found in Tables 1 through 6 are based on an ambient temperature (70°F) and will decrease as the system temperature rises. In addition, spring rates decrease over

We Ship


ahiW hiroW

We Cover The World!

PROCO PRODUCTS, INC. The Expansion Joint People

Demand the best — insist on **PROCO**!

Warning: Expansion joints may operate in pipelines or equipment carrying fluids and/or gases at elevated temperatures and pressures. Normal precautions should be taken to make sure these parts are installed correctly and inspected regularly. Precautions should be taken to protect personnel in the event of leakage or splash. Note: Piping must be properly aligned and anchored to prevent damage to an expansion joint. Movement must not exceed specified ratings and

We Ship

World Wi

Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com

SERIES TTB - 6201

The Expansion Joint People

World Wide

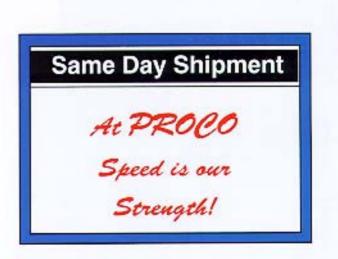
Braided Flexible Metal Threaded Connectors (321 Bronze Hose with Bronze Braid and Male Carbon Steel Ends (NPT)).

Expansion		Lateral	Offset	Worki (Approx.	
Joint Size: ID X Length	Stock	Inter- mittent	Perm- anent	@70°F	@300°F	Unit Ship Weight
1/2 X 10	S	1/4*	1/2*	450	373	1
3/4 X 10	5	1/4*	1/2*	370	307	1
3/4 X 11	Х	1/4*	1/2*	370	307	1
1 X 10	S	1/4*	1/2*	250	207	1
1 X 12	S	1/4*	1/2*	250	207	1 1/2
1 1/4 X 10	S	1/4*	1/2*	200	166	2
1 1/4 X 13	S	1/4*	1/2*	200	166	2 1/2
1 1/2 X 12	S	1/4*	1/2*	200	166	3 1/2
1 1/2X 14	S	1/4*	1/2*	200	166	4
2 X 14	S	1/4*	1/2*	170	141	5
2 X 15	Х	1/4*	1/2*	170	141	5 1/2

WebSales@GoodvearRubberProducts.com

NOTES: 1. "S" indicates stocked item.

SERIES TTS - 6201



Braided Flexible Metal Threaded Connectors (321 Stainless Steel Hose with 304 Stainless Steel Braid and Male Carbon Steel Ends (NPT)).

Expansion		Lateral	Offset	Worki (I	Approx.	
Joint Size: ID X Length	Stock	Inter- mittent	Perm- anent	@70*F	@300°F	Unit Ship Weight
1/2 X 6 1/2	S	1/4*	1/2*	1300	1144	1
1/2 X 9	х	1/4*	1/2*	1300	1144	1
1/2 X 10	S	1/4*	1/2*	1300	1144	1
3/4 X 7	s	1/4*	1/2*	880	774	1
3/4 X 10	s	1/4*	1/2*	880	774	1
3/4 X 11	Х	1/4*	1/2*	880	774	1
1 X 8	S	1/4*	1/2*	605	532	1
1 X 10	s	1/4*	1/2*	605	532	1
1 1/4 X 8 1/2	S	1/4*	1/2*	605	532	1
1 1/4 X 10	S	1/4*	1/2*.	570	501	1 1/2
1 1/4 X 11	х	1/4*	1/2*	570	501	1 1/2
1 1/4 X 12	x	1/4*	1/2*	570	501	2
1 1/4 X 13	S	1/4*	1/2*	570	501	2
1 1/2 X 9	S	1/4*	1/2*	570	501	1 1/2
11/2 X 12	s	1/4*	1/2*	525	462	1.1/2
1 1/2 X 14	х	1/4*	1/2*	525	462	2
2 X 10 1/2	S	1/4*	1/2*	455	400	2
2 X 12	s	1/4*	1/2*	455	400	2 1/2
2 X 14	S	1/4*	1/2*	455	400	3
2 X 15	S	1/4*	1/2*	455	400	3
2 1/2 X 12	s	1/4*	1/2*	345	303	5
2 1/2 X 14	s	1/4*	1/2*	345	303	5 1/2
2 1/2 X 16	s	1/4*	1/2*	345	303	б
3 X 14	s	1/4*	1/2*	290	255	8
3 X 16	5	1/4*	1/2*	290	255	9
3 X 17	x	1/4*	1/2*	290	255	10

L± %*

NOTES: 1. "S" indicates stocked item. 2. "X" denotes 1-2 week shipment lead time.

Call Toll Free: 1-866-711-4673 WebSales@GoodyearRubberProducts.com We Ship World Wide